刘蒙磊 1,2李学彬 2,*陈杰 2,3王菲菲 2,3[ ... ]刘强 2
作者单位
摘要
1 安徽大学物质科学与信息技术研究院,安徽 合肥 230601
2 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室,安徽 合肥 230031
3 中国科学技术大学研究生院科学岛分院,安徽 合肥 230031
为了研究海洋大气气溶胶不同模态的光学特性,基于球形粒子的Mie散射理论,综合运用能见度仪、自动气象站、光学粒子计数器(OPC)以及腔衰减相移式单散射反照率监测仪(CAPS)等设备,对广东茂名地区近海海域的大气气溶胶进行粗、细模态分类以及复折射率反演和研究。反演结果表明,在530 nm处,细模态气溶胶复折射率在相对湿度大于55%时约为1.35(±0.01)?0.019(±0.003)i,在相对湿度小于55%时约为1.37(±0.02)?0.020(±0.003)i;粗模态气溶胶复折射率在相对湿度大于55%时约为1.4?0.004(±0.002)i,在相对湿度小于55%时约为1.48(±0.02)?0.005(±0.002)i。不同模态的气溶胶粒子折射率差异明显,该结论对研究海洋气溶胶气候效应具有一定的参考价值,同时对建立茂名地区海域气溶胶模型具有重要意义。
大气光学与海洋光学 海洋气溶胶 Mie散射 复折射率 气溶胶谱分布 粗模态 细模态 
激光与光电子学进展
2023, 60(21): 2101002
张汉九 1,2孙刚 2,*张坤 1,2巫阳 1,2[ ... ]翁宁泉 1,2
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所大气光学重点实验室,安徽 合肥 230031
利用温度脉动仪在近海面测量的大气折射率结构常数Cn2,结合集合经验模态分解(EEMD)获得不同时间尺度的本征模态函数(IMF)分量,对IMF的周期进行分析,结果表明IMF的平均周期存在较高吻合度的自然指数关系,根据大气湍流各态历经性可以得到其空间尺度特征。对得到的IMF分量进行Hilbert变换,得到IMF在各自中心频率的瞬时波动情况,同时得到常规气象参数与Cn2的Hilbert-Huang变换边际谱。结果表明,对比传统的快速傅里叶变换(FFT),Hilbert-Huang变换更能体现出光学湍流的频谱分布特征。分析了不同层结的常规气象参数与Cn2的相关性,进一步认识近海面光学湍流时空特征。研究结果为海洋环境下激光传输提供一定参考价值。
大气光学湍流 集合经验模态分解 本征模态函数周期 Hilbert-Huang变换 边际谱 
激光与光电子学进展
2022, 59(12): 1201001
巫阳 1,2,4罗涛 2,3,4,*刘常瑜 2,3,4,5张坤 1,2,4[ ... ]饶瑞中 1,2,3,4
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
3 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
4 先进激光技术安徽省实验室, 安徽 合肥 230037
5 安徽建筑大学环境与能源工程学院, 安徽 合肥 230601
通过改装多旋翼无人机 (UAV ) 和搭载各类载荷以及联合地基观测设备对大柴旦地区大气、环境以及气溶胶参数进行测量。利用获得的数据资料,对该地区近地层气溶胶粒子数浓度(即单位体积空气中气溶胶粒子的数目)、消光系数以及气象要素等特征进行了分析。结果表明,在大柴旦地区,近地层气溶胶粒子数浓度日变化显著,呈现双峰形态,气溶胶粒子数浓度的变化范围为75~220 cm -3,消光系数的变化范围为0.004~0.038 km -1;当风速小于6 m/s时,气溶胶粒子数浓度与风速呈负相关关系;当风速大于6 m/s时,二者呈正相关关系;相对湿度对气溶胶粒子的影响较小,这可能是由于该地区以沙尘型气溶胶为主,吸湿性较弱。本研究基于多旋翼无人机探测平台,可以有效地获得近地层精细化大气、环境结构,有助于研究人员了解该地区气溶胶的结构、变化特征以及建立气溶胶模式,同时也为气溶胶及大气环境参数探测方法提供了技术支撑及思路拓展。
大气光学 大气气溶胶 无人机 近地层 气溶胶粒子数浓度 气象要素 
光学学报
2022, 42(6): 0601003
朱宽 1,2,3张鑫 1,2,3鲁文举 1,2,3王菲菲 4[ ... ]王璞 1,2,3,*
作者单位
摘要
1 北京市激光应用技术工程技术研究中心,北京 100124
2 北京工业大学跨尺度激光成型制造技术教育部重点实验室,北京 100124
3 北京工业大学激光工程研究院,北京 100124
4 山东大学晶体材料国家重点实验室,山东 济南 250100
5 暨南大学光子技术研究院,广东 暨南510632
为了研究空芯反谐振光纤的中红外激光传输能力,使用自制的无节点空芯反谐振光纤进行了2.60~4.35 μm的中红外激光传输实验。该空芯反谐振光纤包层由七根平均壁厚为800 nm的玻璃毛细管组成,光纤外径为365 μm,纤芯直径为115 μm。使用中红外可调谐光参量振荡器作为光源,测试了光纤在2.60,3.27,3.41,3.80,4.08,4.21,4.35 μm七个波段的激光传输及损耗特性。结果显示,该光纤可实现2.6~4.08 μm波段低损耗导光,在3.27 μm传输损耗最低,为0.037 dB/m。光纤在4.08 μm和4.35 μm处的传输损耗分别为3.200 dB/m 和0.788 dB/m,而该波段熔融石英吸收损耗分别高达1000 dB/m 和3000 dB/m。研究结果证明,空芯反谐振光纤在中红外激光柔性传输领域拥有巨大潜力。
光纤光学 空芯反谐振光纤 中红外激光 激光传输 
激光与光电子学进展
2022, 59(3): 0306004
Author Affiliations
Abstract
1 State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
2 Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
3 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
4 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China
In this paper, a high-power and high-efficiency 4.3 µm mid-infrared (MIR) optical parametric oscillator (OPO) based on ZnGeP2 (ZGP) crystal is demonstrated. An acousto-optically Q-switched Ho:Y3Al5O12 laser operating at 2.1 µm with a maximum average output power of 35 W and pulse width of 38 ns at a repetition rate of 15 kHz is established and employed as the pump source. A doubly resonant OPO is designed and realized with the total MIR output power of 13.27 W, including the signal and idler output power of 2.65 W at 4.07 µm and 10.62 W at 4.3 µm. The corresponding total optical-to-optical and slope efficiencies are 37.9% and 67.1%, respectively. The shortest pulse width, beam quality factor, and output power instability are measured to be 36 ns, Mx2=1.8, My2=2.0, and RMS<1.9% at 8 h, respectively. Our results pave a way for designing high-power and high-efficiency 4–5 µm MIR laser sources.
mid-infrared laser optical parametric oscillator nonlinearity 
Chinese Optics Letters
2022, 20(1): 011403
Author Affiliations
Abstract
1 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2 Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
Mid-infrared (MIR) laser sources operating in the 2.7–3 µm spectral region have attracted extensive attention for many applications due to the unique features of locating at the atmospheric transparency window, corresponding to the “characteristic fingerprint” spectra of several gas molecules, and strong absorption of water. Over the past two decades, significant developments have been achieved in 2.7–3 µm MIR lasers benefiting from the sustainable innovations in laser technology and the great progress in material science. Here, we mainly summarize and review the recent progress of MIR bulk laser sources based on the rare-earth ions-doped crystals in the 2.7–3 µm spectral region, including Er3+-, Ho3+-, and Dy3+-doped crystalline lasers. The outlooks and challenges for future development of rare-earth-doped MIR bulk lasers are also discussed.
mid-infrared laser 2.7–3 µm spectral region Er3+, Ho3+, and Dy3+-doped crystal 
Chinese Optics Letters
2021, 19(9): 091407
作者单位
摘要
1 郑州师范学院物理与电子工程学院,河南 郑州 450044
2 中国科学院上海技术物理研究所红外成像材料与探测器重点实验室,上海 200083
对比研究了石墨烯包裹的纳米线与金属包裹的纳米线亚波长传输特性。针对单线和双线两个结构,采用有限元方法研究了不同频率和尺寸下最低阶模式的场分布和传输特性。结果表明,当金属层厚度大于其趋肤深度时,石墨烯包裹的纳米线的基模光场约束性能更好;当金属层厚度远小于趋肤深度时,金属包裹的纳米线和石墨烯包裹的纳米线亚波长传输性能相当。相关研究结果可为等离激元材料的选择提供参考,在亚波长光子器件领域有潜在的应用价值。
光学器件 波导 红外波 纳米线 
激光与光电子学进展
2021, 58(9): 0923001
Author Affiliations
Abstract
1 State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
2 Key Laboratory of Crystal Materials, Ningbo University, Ningbo 315211, China
3 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
In this paper, the absorption and fluorescence spectra of Er3+, Pr3+ co-doped LiYF4 (Er,Pr:YLF) crystal were measured and analyzed. The Pr3+ co-doping was proved to effectively enhance the Er3+:I411/2I413/2 mid-infrared transition at the 2.7 μm with 74.1% energy transfer efficiency from Er3+:I413/2 to Pr3+:F34. By using the Judd–Ofelt theory, the stimulated emission cross section was calculated to be 1.834×10-20 cm2 at 2685 nm and 1.359×10-20 cm2 at 2804.6 nm. Moreover, a diode-end-pumped Er,Pr:YLF laser operating at 2659 nm was realized for the first time, to the best of our knowledge. The maximum output power was determined to be 258 mW with a slope efficiency of 7.4%, and the corresponding beam quality factors Mx2=1.29 and My2=1.25. Our results suggest that Er,Pr:YLF should be a promising material for 2.7 μm laser generation.
mid-infrared lasers laser materials solid-state lasers 
Chinese Optics Letters
2021, 19(8): 081404
作者单位
摘要
1 山东大学晶体材料国家重点实验室, 新一代半导体材料研究院, 山东 济南 250100
2 山东大学激光与红外系统集成技术教育部重点实验室, 山东 青岛 266237
基于光学超晶格的光参量振荡技术是产生2~5 μm中红外光源的有效途径,在大气环境监测、医疗诊断、精密光谱分析、光电对抗等领域具有重要的应用价值。针对小型化中红外激光器应用需求,开展了结构紧凑、高效率、宽调谐的纳秒光纤激光泵浦的周期极化掺镁铌酸锂光学超晶格(MgO∶PPLN)光参量振荡器(OPO)的研究。采用1.06 μm纳秒光纤激光泵浦多周期(29~31.6 μm)MgO∶PPLN晶体,结合周期和温度调谐,实现了闲频光2.37~4.01 μm连续调谐中红外激光输出。当泵浦功率为9.95 W时,2.37~3.75 μm平均输出功率均大于1.7 W,其中3.4 μm平均输出功率最大,相应的功率和光光转化效率分别为3.68 W和37%。重点讨论了在2.4、2.7、3.8和4.0 μm处的中红外激光输出特性,最大平均输出功率可分别达到2.87、2.45、1.87和1.22 W,相应的光光转化效率分别为17.2%、19.8%、11.2%和8.6%。本文的研究结果为小型化宽调谐中红外激光器的研发提供了重要的实验依据。
激光器 中红外激光 光参量振荡器 MgO∶PPLN 晶体; 宽调谐 
中国激光
2021, 48(5): 0501015
郑显明 1,2,*张文忠 1,2王菲菲 1,3朱文越 1[ ... ]李学彬 1
作者单位
摘要
1 中国科学院安徽光学精密机械研究所,中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽大学物理与材料科学学院, 安徽 合肥 230601
鉴于大气能见度的直观特性和红外光电技术的迫切需求, 提出了一种大气红外能见度的计算与测量方法,并研制了一套大气红外能见度测量仪器,该仪器以1064 nm 波长激光作为光源,以Xenics红外相机为探测器测量红外能见度。暗场处理时利用传统的背景扣除方法和 移位相减法进行对比实验,能见度反演过程中用斜率法和Klett积分法同时对测量结果进行处理, 结果表明该系统测量出的红外能见度与Belfort能见度仪测量结果基本一致,相关系数达80%以上, 表明红外能见度的计算和测量结果是可靠的。
大气光学 红外大气能见度 消光系数 线性回归 Klett积分法 移位相减法 atmospheric optics infrared atmospheric visibility extinction coefficient linear regression Klett integral method shift subtraction method 
量子电子学报
2019, 36(5): 627

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!