作者单位
摘要
中国科学院 工程热物理研究所, 北京 100190
为了研究采用微槽群复合相变换热技术的大功率太阳花散热器多角度投光的方向效应及综合散热性能, 实验研究了散热器高度、功率以及采用微槽群复合相变换热技术后的过余温度、平均对流换热系数随出光倾角的变化规律, 并获得了出光倾角的Ra与Nu关联式。研究结果表明: 出光倾角小于90°时, 微槽群散热器热源过余温度大幅低于型材散热器, 在高度为90 mm, 出光倾角为30°, 输入功率为80,100,120,200 W时热源温度分别降低了11.6,13.3,18.9,26.7 K, 呈现出功率越大降幅越大的趋势; 出光倾角大于90°时, 微槽群散热器热源过余温度略高于型材散热器, 原因是微槽群散热器内部的真空环境影响散热器的均温性; 输入功率越高, 方向效应越明显; 散热器高度越低, 平均对流换热系数越大, 对比高度60 mm与高度90 mm, 在出光倾角为0°时, 功率为80,100,120 W时分别提高了27.5%、23.8%和24.2%。因此, 设计LED灯具散热器时应综合考虑散热器的方向效应。
大功率LED 方向效应 微槽群 自然对流 太阳花散热器 high power LED orientation effects microgrooves natural convection radiator 
发光学报
2019, 40(6): 781
作者单位
摘要
中国科学院工程热物理研究所, 北京 100190
对大功率LED太阳花散热器肋片三角槽扩展表面的散热性能进行了数值模拟与分析,并对肋片长度方向的温度分布进行了实验验证。在考虑自然对流和辐射模型的条件下,研究了肋片表面三角槽的顶角α、槽宽s和槽深d对散热器肋片顶部最高温升ΔTmax、平均对流换热系数h和对流换热热阻R的影响。结果表明:顶角α在90°~120°范围内、向肋片根部倾斜的三角槽在增加散热面积的同时,改善了流场分布,从而显著地增强了太阳花散热器的散热性能;相比于槽宽s,槽深d对平均对流换热系数h影响更为显著,较小或较大的槽深会因平均对流换热系数h的大幅降低而恶化散热效果。
光学器件 太阳花散热器 三角槽 散热性能 
光学学报
2018, 38(12): 1223002
作者单位
摘要
1 武汉大学电子信息学院, 湖北 武汉 430072
2 地球空间信息技术协同创新中心, 湖北 武汉 430079
对于基于块进行立体匹配的深度学习方法而言,网络结构的设计对匹配代价的计算至关重要,同时,卷积神经网络(CNN)在图像处理时的耗时问题也亟待解决。提出一种基于“缩小型”网络的CNN立体匹配方法。利用CNN训练左右图像块的相似性,计算出立体匹配的匹配代价。其中,CNN特征提取阶段,通过对每个层增加相应的批归一化层,可以使训练使用更大的学习率,加快网络训练收敛速度。另外,网络设计中全连接层采用“逐层缩小”的形式,结合上述网络优化和损失函数改善,在保证精度的同时提高了运行速度。使用KITTI数据集对算法进行验证,实验结果证明,相比目前国内外先进方法,本文算法在精度方面有一定优势,相比部分方法,速度有较大提升。
机器视觉 立体匹配 匹配代价 相似性学习 卷积神经网络 
光学学报
2018, 38(8): 0815017
作者单位
摘要
长沙理工大学能源与动力工程学院, 清洁能源与智能电网湖南省2011协同创新中心, 湖南 长沙 410114
研究煤灰中矿物质的性质通常从矿物组成的表征入手。 为了分析两种高硅铝煤灰的矿物成分, 采用傅里叶变换红外光谱(FTIR)、 拉曼光谱和X射线衍射(XRD)技术对煤灰样进行了测试和综合表征, 将FTIR和拉曼光谱的分析结果与XRD进行了比较。 FTIR结果表明, 在1 100~1 000 cm-1范围内高硅铝煤灰出现最强的特征峰, 例如石英峰(1 089 cm-1)和偏高岭石峰(1 042 cm-1), 它们都归属于Si—O伸缩振动。 对原始红外谱图进行二阶导数处理后, 可获得重叠峰的峰位, 有助于更完整的解析矿物吸收峰, 从而获得更丰富的矿物组成信息。 煤灰中硬石膏的红外和拉曼光谱发现, 在1 157, 1 126和674 cm-1的拉曼光谱峰与在1 151, 1 120和678 cm-1的红外光谱峰振动模式分别相同且峰位接近, 还存在一些完全不同的拉曼光谱与红外光谱峰, 表明这两种光谱存在互补性。 尽管煤灰中锐钛矿含量很低, 但由于Ti—O的极化率很高, 因此拉曼光谱显示锐钛矿的144 cm-1峰远远强于石英的461 cm-1峰。 XRD结果表明, 煤灰中主要存在石英、 云母、 赤铁矿、 硬石膏和未知的无定形相矿物, FTIR和拉曼光谱综合分析的结果表明除了这些矿物, 还存在偏高岭石、 无定形氧化硅、 长石、 方解石和锐钛矿等。 在定性分析方面, 将FTIR和拉曼光谱结合起来比XRD单独获得的矿物组成信息更为详细。
煤灰 矿物 红外光谱 拉曼光谱 Coal ash Mineral matter Infrared spectroscopy Raman spectroscopy 
光谱学与光谱分析
2018, 38(3): 789

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!