焦崇淼 1,2,3贺岩 1,*胡善江 1侯春鹤 1[ ... ]陈卫标 1,**
作者单位
摘要
1 中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
3 国科大杭州高等研究院,浙江 杭州 310024
针对水下平台与高空飞机的激光通信中有效通信时间短、使用信标光的捕获对准时间较长、链路不易建立的问题,设计了一套基于水下平台的高空飞机轨迹预报跟踪及指向系统。系统根据飞机发送的航行参数对飞机轨道进行预报,并驱动伺服电机进行跟踪指向。仿真分析了轨道预报算法的误差,并将轨道预报算法应用在实际实验中。实验结果表明,水下平台接收到航行参数后,能在2 s内建立上行通信链路。该算法能够在0.6 s内预测60 s内的轨道位置,误差小于350 m,对应的理论指向误差不超过0.51 mrad。通过比较指向电机的实时反馈与理论指向角,得到系统的指向误差为0.77 mrad。所设计的系统在满足通信指向精度的同时缩短了链路的建立时间,为水下平台与高空激光系统的猝发激光通信提供了具有高可靠性的保障。
激光通信 跟踪 指向系统 指向精度 轨迹预报 
光学学报
2024, 44(6): 0606003
Author Affiliations
Abstract
1 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
A single-resonant low-threshold type-I β-Ba2BO4 (BBO) optical parametric oscillator (OPO) with tunable output from 410 nm to 630 nm at 5 kHz repetition rate is reported. By taking the noncollinear phase matching method, low-threshold OPO operation could be obtained compared with the configuration of collinear phase matching, and the maximum optical–optical conversion efficiency of 11.8% was achieved at 500 nm wavelength when 0.4 mJ pump pulse energy was applied. When the noncollinearity angle was preset at 1.6°, 4.8°, and 6.3°, a continuously tuning output with a total spectral range of 220 nm was successfully obtained by adjusting the phase matching angle of the BBO crystal.
optical parametric oscillator noncollinear phase matching low threshold high pulse repetition frequency widely tunable spectrum range 
Chinese Optics Letters
2022, 20(2): 021403
作者单位
摘要
1 中国科学院上海光学精密机械研究所 空间激光信息传输与探测技术重点实验室,上海 201800
2 中国科学院大学 材料与光电研究中心,北京 100049
机载激光雷达已经应用于浅海地形测绘,与激光器、接收望远镜和探测器一样,水深提取算法也是决定系统最大测深能力的关键环节。常规的水深提取算法是对单个激光雷达采集的波形数据进行处理,通过提取波形中的海表和海底位置实现水深测量,这种方法在提取水深较深的海底微弱回波信号时,易受海水散射层强信号的影响,导致水深提取能力和准确度下降。为了解决这一问题,将一维回波波形数据按采集顺序组合成二维的回波强度图像,图像的每一列代表一条回波波形,图像的灰度值对应着回波信号强度。利用图像的横向相关性,通过双边滤波、局部阈值二值化等图像处理方法,提取出海底回波信号廓线。该方法一方面提升了海底回波的提取能力,一方面避免散射层信号对海底微弱信号的干扰,为浅海地形、水下目标一体化探测提供新的数据处理方式。
激光雷达 水深提取 图像处理 图像分割 lidar water depth extraction image processing image segmentation 
红外与激光工程
2021, 50(6): 20211034
作者单位
摘要
1 中国科学院上海光学精密机械研究所 空间激光传输与探测技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 自然资源部第二海洋研究所, 浙江 杭州 310012
4 山东科技大学, 山东 青岛 266590
机载激光雷达的海陆波形分类对于沿海地区及其变化性质的研究至关重要。提出了一种在原始的机载激光雷达回波上使用深度学习进行分类的方法。构建全连接神经网络和一维卷积神经网络(CNN), 在一个测量海域的数据集上进行训练和测试, 最优模型获得了99.6%的分类精度。该最优模型对来自不同测量海域的数据进行分类, 分类精度达到了95.6%,相比支持向量机方法, 处理速度提高了约52%。结果表明: 深度学习方法对机载激光雷达回波波形的分类具有较高的精度和速度, 它可以进一步作为通过机载激光测深技术对海底种类进行分类的候选方法。
海洋测深 激光雷达 分类 深度学习 bathymetry lidar classification deep learning 
红外与激光工程
2019, 48(11): 1113004
作者单位
摘要
1 中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 山东科技大学测绘科学与工程学院, 山东 青岛 266590
4 杭州中科天维科技有限公司, 浙江 杭州 310026
为了提高脉冲激光测距回波时刻解算方法的应用场景适应性,将回波时刻解算问题转换为波形分类的问题,采用深度学习的新方法实现回波时刻的解算。通过仿真模拟计算产生0.1 ns时间分辨率的不同距离、信号幅度、波形形状和噪声的样本回波数据,训练一维卷积神经网络模型,在样本测试集上获得了99.85%的分类精度;采用深度学习方法和高斯拟合方法处理同样的机载激光雷达回波数据,墙面线扫数据解算结果相关系数为0.99981,外场飞行试验数据平面拟合残差均在20 mm左右,两种方法回波时刻解算效果相当。结果表明,新方法能够满足机载脉冲激光测距回波时刻解算要求,具备进一步提高解算精度和适应更多应用场景的潜力。
遥感 脉冲激光测距 回波时刻解算 深度学习 卷积神经网络 激光雷达 
中国激光
2019, 46(10): 1010001
作者单位
摘要
1 山东科技大学 测绘科学与工程学院, 山东 青岛 266590
2 山东科技大学 海洋工程研究院, 山东 青岛266590
3 中国科学院上海光学精密机械研究所, 上海 201800
4 杭州中科天维科技有限公司, 上海 201800
5 国家海洋局第二海洋研究所, 浙江 杭州 310012
根据机载激光测深系统扫描部分结构,针对圆镜偏轴卵形扫描方式, 从光束发射方向出发, 基于扫描结构轴向关系利用光线反射定律推导出激光出射方向向量, 结合激光出射位置到海表点距离获得海面激光点坐标; 依据光线折射定律, 利用变折射率光线追踪算法推导出海底测深点坐标计算公式, 建立海面激光入射点及海底测深点坐标严密计算模型。根据模型定位公式, 分析扫描系统视准轴误差影响, 通过数值模拟, 分析扫描系统视准轴误差对定位精度影响, 为扫描系统单体设备加工、装调、集成检校提供依据, 为机载雷达测深系统提供海底测点精确计算、改正提供参考。
机载激光雷达测深 测深定位模型 卵形扫描 视准轴误差 airborne lidar bathymetry bathymetry positioning model oval scanning boresight error 
红外与激光工程
2019, 48(6): 0606005
胡善江 1,2,3,*贺岩 1,3,4陈卫标 1,3朱小磊 1,3[ ... ]瞿帅 9
作者单位
摘要
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院大学,北京 100049
3 中国科学院空间激光信息传输与探测技术实验室, 上海 201800
4 上海大恒光学精密机械有限公司, 上海 201800
5 杭州中科天维科技有限公司, 上海 201800
6 山东科技大学, 山东 青岛266590
7 国家海洋局第二海洋研究所, 浙江 杭州 310012
8 中国科学院遥感与数字地球研究所, 北京 100094
9 北京林业大学, 北京 100083
针对林业、建筑、近海、岛礁和滩涂的测绘要求, 中国科学院上海光学精密机械研究所开发了具有自主知识产权的机载双频激光雷达产品样机, 可以同时完成对陆地地形和海底地形进行测绘。该样机在三亚蜈支洲岛进行了飞行试验, 最大探测深度达到30 m, 等效一类水质条件下可达50 m, 最小探测深度达到0.22 m, 测深数据和单波束声呐数据对比中误差为0.108 m, 实地测量数据和陆地点云量测数据比对中误差为0.18 m, 试验结果基本符合设计预期, 为进一步产品定型打下了良好的基础。
双频激光雷达 海洋测绘 海底地形 dual-frequency lidar ocean mapping seabed topography 
红外与激光工程
2018, 47(9): 0930001
作者单位
摘要
1 国家海洋局第二海洋研究所卫星海洋环境动力学国家重点实验室, 浙江 杭州 310012
2 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
3 山东科技大学测绘科学与工程学院, 山东 青岛 266590
4 中国海监南海航空支队, 广东 广州 510310
综合了已有的机载激光雷达测深系统的波形处理方法。基于国产多通道海洋激光雷达波形数据的多通道优势,运用去卷积、数值拟合和信号滤波等波形处理方法,针对不同类型的波形,提出了一套适用于国产硬件的波形处理方法。该方法可保证回波位置提取的稳健性。
遥感 激光雷达 测深系统 波形处理 波形分类 去卷积 数值拟合 信号滤波 
激光与光电子学进展
2018, 55(8): 082808
贺岩 1,2,3,*胡善江 1,2,4陈卫标 1,2朱小磊 1,2[ ... ]姚斌 3
作者单位
摘要
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院空间激光信息传输与探测技术实验室, 上海 201800
3 上海大恒光学精密机械有限公司, 上海 201800
4 中国科学院大学, 北京 100049
5 南京大学中国南海研究协同创新中心, 江苏 南京 210023
6 中国海监南海航空支队, 广东 广州 510310
7 杭州中科天维科技有限公司, 浙江 杭州 310026
8 山东科技大学测绘科学与工程学院, 山东 青岛 266590
9 国家海洋局第二海洋研究所, 浙江 杭州 310012
10 中国科学院遥感与数字地球研究所, 北京 100094
11 北京林业大学林学院, 北京 100083
机载双频激光雷达探测技术利用双波长激光实现海陆一体化测绘,从1969年至今,国际上已经形成了成熟的商业产品,应用于海洋、海岸带和岛礁的探测。中国科学院上海光学精密机械研究所从1998年开始,先后研发了三代机载双频激光雷达,完成了从原理样机阶段到产品样机阶段的转化。最新的Mapper5000系统在南海完成了11个架次的机载飞行试验,获得南海岛礁的三维地形数据,最大实测深度达到51 m,最浅水深达到0.25 m,测深精度为0.23 m,水平位置精度为0.26 m,海洋测点密度为1.1 m×1.1 m,陆地测点密度为0.25 m×0.25 m。
双频激光雷达 海陆一体化测绘 三维地形 
激光与光电子学进展
2018, 55(8): 082801
作者单位
摘要
1 山东科技大学测绘科学与工程学院, 山东 青岛 266590
2 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
3 青岛秀山移动测量有限公司, 山东 青岛 266590
4 杭州中科天维科技有限公司, 浙江 杭州 310016
5 中国海监南海航空支队, 广东 广州 510310
机载激光测深系统能够快速、高效地测量浅海、岛礁、暗礁及船只无法安全到达的水域,能够提供近岸全覆盖50 m水深测量;船载移动测量系统可以获得近岸浅海水底地形数据及近岸岛礁精细三维激光点云,二者数据在测量区域以及测量范围上具有一定的互补性。文中采用一种基于曲率特征点的改进迭代最近点(ICP)算法,将国产机载测深系统和船载移动测量系统获取的机载激光测深数据、多波束数据、三维激光扫描数据进行配准融合。结果表明,通过将二者数据进行配准融合,可以实现陆地、浅海区域海陆地形的全面精准描述、海陆基准统一,有助于海岛礁地形地貌认识、水下目标物探测及发现等。
数据配准 曲率特征点 ICP算法 机载激光测深系统 船载移动测量系统 
激光与光电子学进展
2018, 55(8): 082802

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!