作者单位
摘要
1 空军工程大学 航空航天工程学院 等离子体重点实验室, 西安 710038
2 西安交通大学 机械工程学院, 西安 710049
3 中国人民解放军 94314部队, 郑州 450000
利用ABAQUS有限元软件进行了单个圆形高斯光斑的激光冲击强化数值模拟,分析材料表面光斑中心区域形成的“残余应力洞”现象,并通过分析材料的动态力学响应特征揭示了“残余应力洞”的形成机制。结果表明:在冲击波加载时,光斑边界处会产生很强的剪切应力,形成向四周传播的表面稀疏波和向材料内部传播的剪切波。当稀疏波同时传播到光斑中心,发生相遇、汇聚,使材料产生急剧的上下位移过程,造成冲击波加载塑性变形后的二次塑性变形。二次塑性变形中形成了较大的剪切塑性应变,并降低了冲击波加载阶段产生的轴向和径向塑性应变,使残余压应力降低,从而形成“残余应力洞”。
激光冲击强化 残余应力洞 形成机制 稀疏波 剪切波 laser shock peening residual stress hole formation mechanism rarefaction wave shear wave 
强激光与粒子束
2014, 26(11): 119003
作者单位
摘要
1 空军工程大学航空航天工程学院, 等离子体动力学重点实验室, 陕西 西安 710038
2 西安交通大学机械工程学院, 陕西 西安 710049
对TC11钛合金标准疲劳试件进行激光喷丸处理,利用高周振动疲劳试验验证强化效果,通过断口观察分析疲劳机理,再从微观组织、残余应力和显微硬度等方面分析激光喷丸提高TC11钛合金疲劳性能的强化机制。试验结果表明,强化后疲劳试件的疲劳极限由483 MPa提高到593 MPa;强化试件的裂纹源位于次表层深0.2 mm处,平坦区扩大,快速扩展区产生大量二次裂纹和排列紧密的疲劳条带。表层发生较高程度细化,形成尺寸为40~80 nm的纳米晶;并引入高数值残余压应力,表面残余应力达-591.5 MPa,其塑性变形层深度达1 mm,且表面硬度提高19%。TC11钛合金标准疲劳试件强化后疲劳强度提高主要是因为高程度组织细化和高数值残余压应力的综合作用,进而阻碍裂纹萌生和降低扩展速率。
激光器 激光冲击强化 TC11钛合金 疲劳极限 断口分析 强化机制 
中国激光
2013, 40(8): 0803006

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!