作者单位
摘要
河北大学 物理科学与技术学院, 河北 保定 071002
在介质阻挡放电系统中首次发现了白眼超点阵同心圆环发光斑图。采用光电倍增管和高速照相机等仪器对该斑图的时空动力学进行研究,结果显示该斑图由奇数圈的点阵圆环和偶数圈的白眼圆环嵌套而成。将奇数圈的点阵记作O(Odd number,O),偶数圈的白眼中心点记作E(Even number,E),白眼晕记作H(Halo,H)。O在电压上升沿的第一个脉冲全部放电且在电压下降沿部分放电,H在电压上升沿的包络处放电,E在电压下降沿放电。用两个光电倍增管对O和E的时间相关性进行研究,实验结果表明O与E在电压下降沿的放电顺序随机。用高速录像机拍摄的瞬时照片表明该斑图的每个体放电都伴随着沿面放电。H在奇数圈的随机放电导致了部分O在电压下降沿的放电,沿面放电对壁电荷的重排作用导致了O与E放电顺序的随机性。
发光斑图 介质阻挡放电 沿面放电 壁电荷 luminescent pattern dielectric barrier discharge surface discharge wall charge 
发光学报
2019, 40(10): 1311
孙浩洋 1,2,*董丽芳 1,2韩蓉 1,2刘彬彬 1,2[ ... ]郝芳 1,2
作者单位
摘要
1 河北大学物理科学与技术学院, 河北 保定 071002
2 河北省光电信息材料重点实验室, 河北 保定 071002
介质阻挡放电系统(DBD) 作为一个典型的非平衡气体放电系统, 不仅在工业生产如低温等离子体生产和发光等方面被广泛应用, 而且该系统表现出的非线性现象、 自组织现象也吸引人们的关注。 DBD系统中放电丝的等离子体参量受诸多因素影响, 为了探究DBD系统的放电条件对等离子体参量的影响, 该实验重新设计放电单元以保证在其他实验条件相同的情况下, 对放电气隙间距和气体组分与等离子体参数之间的关系展开研究。 本实验的放电单元为一个平板型玻璃框架气隙, 该气隙由三个厚度均为1.2 mm, 放电区域边长分别为40, 30和20 mm的正方形玻璃框架复合而成, 因此该放电气隙有三个放电区域, 将此复合气隙放置于可调节气体成分和压强的真空室内, 可以同时产生三种放电气隙间距分别为1.2, 2.4和3.6 mm的等离子体放电丝。 高速录像机拍摄的瞬时照片表明三种放电丝均为随机放电丝, 即其放电类型均为流光放电。 在垂直于放电气隙平面的方向设置光路, 使用聚焦透镜获得清晰的成像, 移动光纤探头实现空间分辨并采集数据。 实验用光谱仪采集三种等离子体的氮分子第二正带系(C3Πu→B3Πu) 谱线, 根据谱线强度计算得到各类放电丝的分子振动温度; 利用谱线中包含的氮分子离子N+2第一负带系谱线(391.4 nm)和氮分子第二正带系394.1 nm谱线强度的比值反应放电丝中电子平均能量; 改变气室内氩气的含量, 得到了三种等离子体的分子振动温度和电子平均能量的变化趋势。 实验结果表明: 在氩气含量0%~60%区间内, 随着氩气含量的增加, 三种等离子体的分子振动温度均先升高后降低, 整体趋势表现为相同氩气含量下放电气隙间距越小分子振动温度越高, 即1.2 mm气隙厚度中的放电丝的分子振动温度最高, 2.4 mm气隙厚度次之, 3.6 mm气隙厚度的最低; 随氩气含量的增加放电丝的平均电子能量先升高后降低, 氩气含量相同时气隙厚度越小的放电丝的电子平均能量越高, 即1.2 mm气隙厚度中放电丝的电子平均能量最高, 2.4 mm气隙厚度的次之, 3.6 mm气隙厚度中的最低。 实验结果对于研究DBD系统中等离子体参量、 工业生产等方面具有重要的参考意义。
介质阻挡放电 发射光谱 分子振动温度 电子平均能量 Dielectric barrier discharge Optical emission spectrum Molecular vibration temperature Electron average energy 
光谱学与光谱分析
2019, 39(2): 406
作者单位
摘要
河北大学 物理科学与技术学院, 河北 保定 071002
为了丰富介质阻挡放电系统中斑图的多样性, 利用双水电极介质阻挡放电装置, 在空气和氩气按一定比例混合的气体中(氩气含量χ=25%), 发现了带晕蜂窝六边形斑图。通过观察用普通相机拍摄的斑图照片, 可以发现斑图是由中心点、晕和蜂窝框架构成, 且中心点位于晕的中心, 中心点和晕嵌套在蜂窝框架的中心。采用带有3个通道的高速照相机对斑图进行分脉冲瞬态拍摄, 结果显示带晕蜂窝六边形斑图的3套子结构在外加电压的半周期内, 总是按照晕-蜂窝框架-中心点这样的顺序放电。运用光电倍增管对这3套子结构进行研究, 发现晕的放电在时间和空间上具有局部选择性。利用发射光谱法, 根据氮分子第二正带系(C3Πu→B3Πg)谱线计算了中心点、晕和蜂窝框架的分子振动温度, 结果显示: 中心点的分子振动温度为2 632 K, 晕的分子振动温度为2 679 K, 蜂窝框架的分子振动温度为2 720 K。本文利用壁电荷理论解释带晕蜂窝六边形斑图的形成机制和时空结构。
介质阻挡放电系统 带晕蜂窝六边形斑图 时空动力学 壁电荷 DBD honeycomb superlattice pattern with hole spatio-temporal dynamics wall charges 
发光学报
2018, 39(11): 1527
作者单位
摘要
1 北华航天工业学院 基础部, 河北 廊坊 065000
2 河北大学 物理科学与技术学院, 河北 保定 071002
对单针电极射流等离子体产生和发展过程中的光信号进行了研究。首先发现等离子体的长度并不是随外加电压升高而增加, 而是和驱动电源的能量在正半周放电脉冲之间的分配有关。通过研究等离子体通道内不同位置的发光信号, 发现正半周期第一次放电脉冲是在针尖电极处产生, 而第二个脉冲是在等离子体通道中部产生, 电子激发温度也是在等离子体中部达到最高。通过分析发现, 空间电荷产生的附加电场对于等离子体的产生和发展有着重大影响。
射流等离子体 单针电极 电子激发温度 空间电荷 plasma jet single needle electrode electronic excitation temperature space charge 
发光学报
2018, 39(10): 1405
作者单位
摘要
河北大学物理科学与技术学院, 河北 保定 071002
空气和氩气混合气体的双水电极介质阻挡放电装置中, 在电压升高过程中首次发现了两种由亮点和暗点组成的亮暗点菱形斑图。 通过观察斑图照片可以发现: 第一种菱形斑图(菱形斑图Ⅰ)中的暗点处于由亮点组成的菱形单元的中心; 第二种菱形斑图(菱形斑图Ⅱ)中的暗点恰好处于周围其他三个亮点的中心位置。 利用发射光谱法, 通过采集氮分子(N2)第二正带系(C3Πu→B3Πg)发射谱线和氩原子696.54 nm(2P2→1S5)谱线的展宽, 研究了两种菱形斑图中亮点和暗点的分子振动温度和电子密度。 实验发现: 两种菱形斑图中暗点的分子振动温度均高于亮点, 相对菱形斑图Ⅰ来说, 菱形斑图Ⅱ中的亮点和暗点的分子振动温度均升高; 而菱形斑图Ⅰ中暗点的电子密度低于亮点, 菱形斑图Ⅱ中亮点和暗点的电子密度却几乎相等。 两种菱形斑图中电子密度表现出不同的变化趋势, 且在菱形斑图Ⅱ中表现出的规律尤为特殊, 因而采用高速录像机对菱形斑图Ⅱ进行短曝光拍摄观察斑图中亮点和暗点的成分, 发现暗点是体放电和沿面放电共存的状态。 进一步研究从菱形斑图Ⅰ到菱形斑图Ⅱ的演化过程中三种斑图中亮点的电子密度, 结果发现: 演化中间过程的斑图中的亮点的电子密度最大, 菱形斑图Ⅱ中亮点的电子密度最低。 实验结果对于研究斑图的自组织形成过程具有参考作用。
介质阻挡放电 斑图 分子振动温度 电子密度 Dielectric barrier discharge Pattern Molecule vibration temperature Electron density 
光谱学与光谱分析
2017, 37(9): 2698
作者单位
摘要
河北大学物理科学与技术学院, 河北 保定 071002
采用H型放电间隙的介质阻挡放电装置, 在氩气和空气的混合气体中, 得到了三种新颖的等离子体发光斑图。 较于传统获得的斑图, 这三种发光斑图是产生在单层气隙与双层气隙结合的气隙装置之中。 通过相机拍摄到的斑图照片, 可以发现单层气隙和双层气隙中微放电通道呈现的发光亮度、 颜色、 放电面积等状态有所不同, 这表明微放电通道所处的等离子体状态可能各不相同。 通过分析这三种等离子体发光斑图, 利用发射光谱法首次研究了单层气隙和双层气隙内微放电通道的等离子体参量。 实验通过采集氮分子第二正带系(C3Πu→B3Πg)的发射谱线计算了单层气隙和双层气隙内微放电丝的分子振动温度, 并进一步利用氩原子696.57 nm(2P2→1S5)谱线的展宽分析了单层气隙和双层气隙内微放电丝的电子密度。 结果发现: 在左右相同厚度的双层气隙中, 耦合微放电丝的分子振动温度基本相同, 电子密度也趋于一致, 单层气隙内微放电丝的分子振动温度要高于双层气隙内微放电丝, 电子密度则小于双层气隙内微放电丝。 单层气隙和双层气隙中不同微放电通道等离子体状态的差异性使之形成多种折射率的等离子体光子晶体, 其周期性排布将具有更加丰富的带隙结构。
介质阻挡放电 分子振动温度 电子密度 Dielectric barrier discharge Molecular vibration temperature Electron density 
光谱学与光谱分析
2017, 37(9): 2692
冯建宇 1,2,*董丽芳 1,2魏领燕 1,2刘莹 1,2牛雪姣 1,2
作者单位
摘要
1 河北大学物理科学与技术学院, 河北 保定 071002
2 河北省光电信息材料重点实验室, 河北 保定 071002
在空气与氩气组成的混合气体的介质阻挡放电实验中, 采用发射光谱法, 首次研究了放电气隙分别为: 1, 4和2 mm三层放电气隙中的放电丝的光谱特性。 这与以往的单层放电气隙或者是双层放电气隙中的放电丝在光谱特性方面有很大的不同。 实验通过采集氮分子第二正带系(C3Πu→B3Πg)谱线, 计算出不同放电气隙中的放电丝的分子振动温度。 利用氮分子离子3914 nm谱线强度与氮分子3941 nm谱线的强度之比得到不同放电气隙中放电丝的电子平均能量。 增加氩气在混合气体中的比例, 得到分子振动温度及电子平均能量随着氩气含量增加的变化趋势。 实验结果表明: 在同一氩气含量下, 分子振动温度从小到大的顺序为: 2 mm放电气隙, 1 mm放电气隙, 4 mm放电气隙。 电子平均能量从小到大的顺序为: 4 mm放电气隙, 2 mm放电气隙, 1 mm放电气隙。 三层放电气隙中放电丝的分子振动温度及电子平均能量均随着氩气含量的增加而减小。
介质阻挡放电 分子振动温度 电子平均能量 Dielectric barrier discharge Molecule vibrational temperature Electron average energy 
光谱学与光谱分析
2017, 37(2): 387
作者单位
摘要
1 河北大学 物理科学与技术学院, 河北 保定 071002
2 滨州学院 航空工程学院, 山东 滨州 256603
在双水电极介质阻挡放电装置中,在氩气和空气的混合气体放电过程中通过改变气体压强可以得到一种新型等离子体光子晶体。该光子晶体具有四边形的复杂对称结构,包括晶胞中心处的细等离子体柱、四周的等离子体片、等离子体片交叉点产生的等离子体柱和边缘处的粗等离子柱。运用发射光谱法研究了该等离子体光子晶体不同位置处的等离子体状态,通过测量氩原子696.54 nm(2P2→1S5)发射谱线的展宽对比了电子密度,通过氮分子第二正带系(C3Πu→B3Πg)发射谱线计算了分子振动温度。实验结果证实,不但晶胞中心处的细等离子体柱、四周的等离子体片、等离子体片交叉点产生的等离子体柱和边缘处的粗等离子柱具有不同的等离子体状态,不同位置处的晶胞中心细等离子体柱也具有不同的等离子体状态。电子密度由大到小排列依次为:4个角上的细等离子体柱(A)、靠近4个边的细等离子体柱(B)、靠近中心的细等离子体柱(C)、边缘处的粗等离子体柱(D)、等离子体片交叉点产生的等离子体柱(E)、四周的等离子体片(F)。分子振动温度的变化规律与电子密度相反。由于该晶体结构中A、B、C 3处的折射率均不相同,由内向外呈周期性渐变排列,它们和其他位置处不同的等离子体状态构成了具有渐变折射率的等离子体光子晶体。
等离子体光子晶体 介质阻挡放电 发射光谱 plasma photonic crystal dielectric barrier discharge optical emission spectra 
发光学报
2017, 38(2): 232
作者单位
摘要
河北大学物理科学与技术学院, 河北省光电信息材料重点实验室, 河北 保定 071002
在空气与氩气按比例混合组成的气体放电中, 研究了由中心点和六边形晕组成的六边形晕斑图。 从照片中观察六边形晕斑图结构, 发现中心点和六边形晕的亮度有明显的差异, 说明中心点和六边形晕可能处的等离子体状态不同。 利用发射光谱法, 详细研究了该六边形晕斑图结构的中心点和六边形晕的等离子体参数随压强的变化关系。 实验根据氮分子第二正带系(C3Πu→B3Πg)谱线计算了中心点和六边形晕的分子振动温度; 通过氮分子离子(391.4 nm) 与氮分子(394.1nm)谱线强度比, 反映中心点和六边形晕的电子平均能量; 利用氩原子696.5 nm(2P2→1S5)谱线的展宽, 研究了电子密度。 实验结果表明: 六边形晕斑图主要范围是氩气含量从60%~75%、 压强从30~46 kPa。 在相同的压强条件下, 六边形晕比中心点的分子振动温度、 电子平均能量均要高。 随着压强从30 kPa逐渐升高到46 kPa, 中心点和六边形晕的分子振动温度、 电子平均能量是逐渐增大的。 在相同的压强条件下, 六边形晕比中心点的谱线展宽要大, 且随着压强的升高而增加, 表明电子密度随着压强的增大而升高。 六边形晕和中心点的等离子体的状态不同, 说明二者放电机制上的差异。 进一步采用高速照相机对斑图的电流脉冲进行分脉冲瞬时拍摄, 发现中心点是由先放电的体放电形成, 而六边形晕是由放电晚于体放电的沿面放电形成。
介质阻挡放电 六边形晕斑图 分子振动温度 电子平均能量 电子密度 高速照相机 Dielectric barrier discharge The spot-halo hexagon pattern Molecule vibrational temperature Electron average energy Electron density The high speed camera 
光谱学与光谱分析
2016, 36(6): 1877
作者单位
摘要
河北大学物理科学与技术学院, 河北 保定 071002
利用水电极介质阻挡放电装置, 在氩气和空气的混合气体中, 首次观察到了超四边斑图沿面放电, 它是由中心点和暗点组成的。 通过观察普通相机的斑图照片, 可以发现中心点位于周围四个暗点的中心处。 利用高速录像机对斑图进行短曝光拍摄, 观察发现中心点对应体放电, 暗点对应沿面放电, 暗点由这些沿面放电形成。 中心点和暗点的亮度有所不同, 这说明中心点和暗点的等离子体状态可能不同。 采用发射光谱法, 研究了超四边斑图沿面放电的的中心点和暗点的等离子体参量随氩气含量的变化趋势。 利用氮分子第二正带系(C3Πu→B3Πg)发射谱线, 计算得出了中心点和暗点的分子振动温度; 然后通过氩原子696.57 nm (2P2→1S5)谱线的展宽, 研究了中心点和暗点的电子密度。 实验结果表明: 在相同氩气含量下, 暗点的分子振动温度和电子密度均高于中心点的相应等离子体参量; 在其他实验条件不变的情况下, 随着氩气含量从90%增大到99.9%, 中心点和暗点的分子振动温度和电子密度均逐渐增大。 结果表明中心点和暗点的等离子状态不同, 说明二者的放电机制可能不同。
介质阻挡放电 沿面放电 分子振动温度 电子密度 Dielectric barrier discharge Molecule vibration temperature Electron density Surface discharge 
光谱学与光谱分析
2016, 36(2): 368

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!