作者单位
摘要
1 广东工业大学信息工程学院, 广东 广州 510006
2 中国人民解放军96630部队, 北京 102206
高光谱图像聚类问题一直是图像处理领域的研究热点。谱聚类算法是最流行的聚类算法之一,但其计算复杂度较大,难以处理大规模的高光谱图像数据。由于二叉树能够较快地选取锚点,因此基于二叉树锚点图,充分利用高光谱图像的光谱和空间特性,可保证聚类性能并降低计算复杂度。然而,该聚类算法一般采用有核的聚类方法,因此不可避免地引入了参数调节。在二叉树锚点选取的基础上,提出了一种基于二叉树锚点的高光谱快速聚类算法,该算法创新性地将二叉树锚点选取和无核聚类方法应用于高光谱图像中。首先,利用二叉树从高光谱数据中选取一些具有代表性的锚点;紧接着构造基于锚点的无核相似图,有效避免了通过人为调节热核参数来构造相似图;然后进行谱聚类分析获得聚类结果;最后,将该算法应用到高光谱图像聚类中。该算法不仅提高了聚类速度,还减少了原有热核参数调节。实验结果表明,与传统的聚类算法相比,所提算法能够在较短的时间内获得更佳的聚类精度。
图像处理 高光谱图像 谱聚类 二叉树 锚点 
激光与光电子学进展
2021, 58(2): 0210021

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!