Author Affiliations
Abstract
1 Nanophotonics Research Centre, Shenzhen University & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 Key Laboratory of Optical Information Science and Technology of the Education Ministry of China, Institute of Modern Optics, Nankai University, Tianjin 300071, China
3 Ultrafast Laser Laboratory, Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
4 College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
Femtosecond (fs) cylindrical vector beams (CVBs) have found use in many applications in recent years. However, the existing rigid generation methods seriously limit its development. Here, we propose a flexible method for generating fs-CVBs with arbitrary polarization order by employing half wave plates and vortex retarders. The polarization state, autocorrelation width, pulse width, and spectrum features of the input and generated CVB pulses are measured and compared. The results verify that the generated CVBs remain in the fs regime with no appreciable temporal distortion, and the energy conversion efficiency can reach as high as 96.5%, even for a third-order beam. As a flexible way to generate fs-CVBs, this method will have great significance for many applications.
260.5430 Polarization 320.2250 Femtosecond phenomena 
Chinese Optics Letters
2017, 15(3): 030007
作者单位
摘要
1 深圳大学 数学与统计学院, 广东 深圳 518060
2 南开大学 现代光学研究所 光电信息技术科学教育部重点实验室, 天津 300071
3 深圳大学 纳米光子学研究中心, 广东 深圳 518060
光学旋涡在很多领域开展了广泛的研究和应用。介绍了一种基于涡旋波片的光学旋涡产出方法, 并通过波片组合的方法可以产生任意拓扑荷的光学旋涡, 该方法具有很好的灵活性。同时由于波片的透过率非常高, 实验中拓扑荷为3 的光学旋涡的产生效率高达93%以上。通过干涉产生的叉形光栅叉数和方向进一步检测了产生光学旋涡的拓扑荷。利用产生的光学旋涡还进行了初步的光学操控实验, 验证了轨道角动量对于微颗粒的动态操控作用。该方法将在更多领域得到推广和应用。
光学旋涡 拓扑荷 涡旋波片 轨道角动量 optical vortex topological charges vortex retarder orbital angular momentum 
红外与激光工程
2017, 46(6): 0634001
作者单位
摘要
1 深圳大学纳米光子学研究中心, 广东 深圳 518060
2 深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
光镊是捕获与操纵微纳颗粒的重要技术手段,其基本原理为光与物质之间动量传递的力学效应,具有非接触、操纵精度高等优点,广泛应用于物理、化学、生物及医学等科学前沿领域。近年来,表面等离激元因具有突破衍射极限和近场能量增强两大特性,为光镊技术的发展带来了新的突破口,成为国际上一个重要和前沿的研究方向。基于表面等离激元的新型光镊技术主要分为两类:结构型表面等离激元光镊技术和全光调控型表面等离激元光镊技术,它们在颗粒捕获精度、捕获范围、操纵动态性与操纵自由度等方面各有特色,吸引了国际上众多研究人员进行大量的理论研究和实验探索。表面等离激元光镊技术在纳米颗粒、金属颗粒捕获以及近场电磁场增强与调控方面展现了独特优势,在生物传感、表面增强拉曼散射等领域具有广阔的应用前景。
物理光学 表面等离激元 光镊 金属纳米结构 光学捕获 表面增强拉曼散射 
光学学报
2016, 36(10): 1026004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!