作者单位
摘要
1 哈尔滨工程大学纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150006
2 哈尔滨工程大学物理与光电工程学院,黑龙江 哈尔滨 150006
3 桂林电子科技大学光电工程学院,广西 桂林 541004
提出一种多芯光纤对角芯反射耦合器,可实现多芯光纤对称纤芯的光路低损耗串联。首先,采用纤端精密研磨的方法制备出45°圆台,得到平均插入损耗为2.14 dB的器件;其次,通过研磨制备出多角度圆台,并采用电弧平滑优化的方法实现了圆台的弧形优化,使得平均插入损耗降低至1.39 dB。对2种圆台型器件的制备容差进行了对比分析,结果表明,优化后的弧形圆台相较于优化前具有更好的制备容差和性能。
光纤光学 多芯光纤 反射耦合器 插入损耗 纤端研磨 
光学学报
2023, 43(13): 1306001
Author Affiliations
Abstract
1 Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
2 School of Electronic Information and Electrical Engineering, Huizhou University, Huizhou 516000, China
Optical line tweezers have been an efficient tool for the manipulation of large micron particles. In this paper, we propose to create line traps with transformable configurations by using the transverse electromagnetic mode-like laser source. We designed an optical path to simulate the generation of the astigmatic beams and line traps with a series of lenses to realize the rotational transformation with respect to the rotation angle of cylindrical lenses. It is shown that the spherical particles with diameters ranging from 5 μm to 20 μm could be trapped, aligned, and revolved in experiment. The periodical trapping forces generated by transformable line traps might open an alternative way to investigate the mechanical properties of soft particles and biological cells.
optical line tweezers transformable line traps optical manipulation 
Chinese Optics Letters
2022, 20(5): 053801
作者单位
摘要
桂林电子科技大学电子工程与自动化学院光子学研究中心, 广西 桂林 541004
设计了一种具有鸟喙形的环形芯光纤光镊结构,并通过理论仿真进行研究。应用有限元法仿真光镊的光场强度分布,并对比了不同弯曲条件下光镊的光场图,结果表明,弯曲结构显著增强了光纤侧边的倏逝场强度。采用麦克斯韦应力张量法计算光镊对粒子的捕获力,并对比锥形光纤,分析鸟喙形光纤光镊的弯曲半径与捕获力的关系,以及粒子半径与捕获力的关系。结果证实鸟喙形环形芯光纤光镊不仅可以在尖端捕获粒子,还可以在侧边捕获、运输粒子。所提出的新型光纤光镊可应用于细胞生物学辅助研究领域。
几何光学 光镊 有限元法 倏逝场 麦克斯韦应力张量法 
光学学报
2021, 41(18): 1808001
Author Affiliations
Abstract
1 Key Laboratory of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
2 Photonics Research Center, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
The distributed optical fiber surface plasmon resonance (SPR) sensors have attracted wide attention in biosensing and chemical sensing applications. However, due to the limitation of their sensing structure, it is difficult to adjust their resonant wavelength and sensitivity. Here, novel and flexible cascaded helical-core fiber (HCF) SPR sensors are proposed theoretically and experimentally for distributed sensing applications. It is shown that the resonant wavelength and sensitivity of the sensors can be conveniently controlled by adjusting the twist pitch of the helical core. A high sensitivity of 11,180 nm/RIU for refractive-index measurement ranging from 1.355 to 1.365 is realized experimentally when the twist pitch of the helical core is 1.5 mm. It is worth noting that the sensitivity can be further improved by reducing the twist pitch. For example, the sensitivity of the sensor with a twist pitch of 1.4 mm can theoretically exceed 20,000 nm/RIU. This work opens up a new way to implement multi-parameter or distributed measurement, especially to establish sensing networks integrated in a single-core fiber or a multi-core fiber.
helical-core fiber surface plasmon resonance distributed optical fiber sensor whispering gallery modes 
Chinese Optics Letters
2021, 19(9): 091201
作者单位
摘要
1 桂林电子科技大学 1. 电子工程与自动化学院
2 2. 广西自动检测技术与仪器重点实验室
3 广西精密导航技术与应用重点实验室, 广西 桂林 541004
基于多模干涉理论和自映像效应, 设计了一种高灵敏度多模干涉-异质无芯(SNS)光纤折射率传感器。利用纤芯失配在包层激发的高阶模与无芯光纤中产生的基模耦合产生多模干涉来实现其对折射率的传感测量。应用波束传播法(BPM)数值模拟了传感器在不同折射率条件下光的透射谱, 讨论了无芯光纤的长度及外部环境折射率等参数对传感器性能的影响。通过无芯光纤SNS结构传感器的样品制备, 测试了多组不同浓度蔗糖溶液下的透射谱, 实验结果与数值模拟结果一致。结果表明:在折射率1.330~1.419范围内, 透射谷的波长灵敏度达到189nm/RIU, 透射率灵敏度达到-40%/RIU。
单模-多模-单模 多模干涉 无芯光纤 折射率传感器 光纤光学 single mode-multiple mode-single mode multimode interference no-core fiber refractive index sensor fiber optics 
半导体光电
2020, 41(5): 652
作者单位
摘要
1 桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
2 广西自动检测技术与仪器重点实验室, 广西 桂林 541004
3 桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
采用有限元方法设计了一种基于金属-电介质-金属(MIM)的内嵌对称扇形金属块的纳米圆形谐振腔滤波器。研究发现,通过改变扇形共振角度、圆形谐振腔半径、耦合距离、共振腔内的介质折射率等主要参数可有效调节该结构的透射特性。该滤波器同时出现两个显著的共振峰,透射率最高可达76%,品质因子最高可达40,能高效实现可调谐双通道带通滤波功能。对结构参量进行调整和优化,相应的谐振波长可分布在近红外波段光纤通信的850 nm和1310 nm通信窗口。该结构为设计光通信领域下一代高性能微纳等离子体滤波器提供了重要的理论依据。
表面光学 有限元方法 圆形谐振腔 内嵌对称扇形金属块 等离子体滤波器 
光学学报
2020, 40(11): 1124001
Author Affiliations
Abstract
1 Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China
2 Photonics Research Center, School of Electric Engineering and Automation, Guilin University of Electronics Technology, Guilin 541004, China
In-fiber integrated optics is an attempt to use silica fiber as a substrate, integrating various optical paths or optical components into a single fiber, to build a functional optical device or component, and to realize a micro optical system, achieving various functions. In-fiber integrated optics is expected to be a new branch of photonics integration. This integration technique enables convenient light beams control and manipulation inside in one fiber. It also provides a research platform with micro and nano scale for interaction between light wave and microfluidic materials. In this review, we briefly summarize the main ideas and key technologies of the in-fiber integrated optics by series integration examples.
060.2310 Fiber optics 060.4005 Microstructured fibers 130.3120 Integrated optics devices 
Chinese Optics Letters
2018, 16(11): 110601
作者单位
摘要
哈尔滨工程大学理学院, 黑龙江 哈尔滨 150001
处于倏逝场中的微小粒子会受到辐射压力的作用而朝着倏逝场的传播方向运动,基于此原理的微小粒子驱动技术可用于介质颗粒、胶体颗粒、生物细胞等微小粒子的捕获和驱动。由于倏逝场光学微操作系统不会受到物镜焦深和激光光斑尺寸的限制,因此它比自由空间系统的优越性更强,而波导形成的光学力可以应用于长距离驱动,其仅仅受限于系统的散射和吸收损耗。综述了基于倏逝场微小粒子驱动技术的最新进展,包括广域倏逝场微操纵、平面波导结构的倏逝场微操纵和光纤结构的倏逝场微操纵,并对其进行了比较,分析了它们的捕获能力、驱动效率、结构特点等问题,以及未来的发展趋势。
光捕获 光操纵 光驱动 倏逝场 辐射力 optical trapping optical manipulation optical propulsion evanescent field radiation forces 
光学与光电技术
2011, 9(3): 38

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!