作者单位
摘要
长春理工大学 物理学院 吉林省固体激光技术与应用重点实验室,吉林 长春 130022
提出了一种基于1064 nm掺镱光纤激光器泵浦MgO:PPLN的3.83 μm中红外光学参量振荡器。基于单谐振光学参量振荡器的阈值理论和线宽压窄前后的光束能量集中性理论,分析了不同泵浦光束聚焦深度下,谐振腔内光束分布情况以及线宽调制前后能量的不同集中程度对阈值和光-光转换效率所产生的影响。通过采用单个光纤布拉格光栅的方式压窄了泵浦光线宽,对比分析了在不同占空比下,泵浦光线宽压窄前后对中红外光学参量振荡器输出特性的影响。当泵浦功率为18 W,脉冲激光占空比为0.2%,脉宽为100 ns,泵浦光线宽为2.5 nm时,MgO:PPLN中红外光学参量振荡器获得功率为1.42 W的3.83 μm激光输出,光-光转换效率为7.9%。将线宽压窄到0.1 nm后,脉宽为2 ns,MgO:PPLN中红外光学参量振荡器获得最高功率为1.98 W的3.83 μm激光输出,光-光转换效率为11%,光束质量M2=1.89;同时相比于线宽压窄前激光输出效率提高了39.2%。
光学参量振荡器 窄线宽 光纤激光器 中红外 占空比 optical parametric oscillatoin narrow linewidth fiber laser mid-infrared duty cycle 
红外与激光工程
2022, 51(9): 20210898
Author Affiliations
Abstract
Jilin Key Laboratory of Solid-State Laser Technology and Application, , Changchun 130022, China
A continuous-wave (CW) π-polarized 1084 nm laser based on Nd:MgO:LiNbO3 under 888 nm thermally boosted pumping is reported. According to the absorption spectrum and energy level structure of Nd:MgO:LiNbO3, the 888 nm laser diode (LD) is used for thermally boosted pumping. This pumping method eliminates the quantum defect caused by the nonradiative transition in Nd:MgO:LiNbO3 under the traditional 813 nm pumping and effectively improves the serious thermal effect of the crystal. The unmatched polarized 1093 nm laser is completely suppressed, and the π-polarized laser output of 1084 nm in the whole pump range is realized by the 888 nm thermally boosted pumping. In the present work, we achieved the CW π-polarized 1084 nm laser with a maximum output power of 7.53 W and a slope efficiency of about 46.1%.
continuous-wave laser π-polarization Nd:MgO:LiNbO3 thermally boosted pumping 
Chinese Optics Letters
2022, 20(12): 121401
作者单位
摘要
长春理工大学 吉林省固体激光技术与应用重点实验室,吉林 长春 130022
为了研究毫秒-纳秒组合脉冲激光辐照熔石英的温度场和应力场特征,基于热传导理论和弹塑性力学理论建立了二维轴对称几何模型,利用有限元分析软件对毫秒-纳秒组合脉冲激光辐照熔石英的过程进行了数值分析,得到了熔石英表面及内部的瞬态温度场和应力场的时空分布与变化规律。结果表明:组合脉冲激光中,毫秒激光脉宽为1 ms、能量为120 J,纳秒激光脉宽为10 ns、能量为80 mJ,Δt=1.0 ms条件下毫秒-纳秒组合脉冲激光辐照熔石英出现温度最佳延时。观察总能量相同的组合脉冲激光与毫秒脉冲激光致熔石英的热损伤结果,得到最佳能量配比。研究结果表明,组合脉冲激光中,毫秒脉冲激光对熔石英产生热效应,纳秒脉冲激光对熔石英产生应力效应。
组合激光 数值分析 激光损伤 熔石英 combined laser numerical analysis laser damage fused quartz 
红外与激光工程
2021, 50(S2): 20200415
作者单位
摘要
长春理工大学 理学院 物理系, 长春 130022
为了研究高功率激光致碳纤维/环氧树脂复合材料的热损伤规律, 采用COMSOL软件对多层结构的碳纤维/环氧树脂复合材料的热应力进行模拟计算, 取得了不同功率密度激光辐照复合材料的瞬态温度场与应力场的时空分布及变化规律。测量得到不同功率密度的激光作用碳纤维/环氧树脂后的损伤面积和损伤形貌, 与数值模拟结果的趋势吻合。结果表明, 靶材表面辐照中心点温度在872K时出现温度平台, 即相变潜热期与逆相变潜热期, 并随着激光功率密度变化; 激光辐照靶材对上表面碳纤维产生了极大的轴向压应力, 功率密度为293W/cm2时, 压应力差值约为1.87MPa; 功率密度为3453W/cm2时,压应力差值约为1.42MPa。这一结果对高功率激光致碳纤维/环氧树脂复合材料的热损伤研究提供了理论基础。
激光技术 热应力 数值模拟 复合材料 损伤特性 laser technique thermal stress numerical simulation composite material damage characteristics 
激光技术
2021, 45(5): 636
作者单位
摘要
长春理工大学 理学院 吉林省固体激光技术与应用重点实验室,吉林 长春 130022
采用放大1064 nm掺镱光纤激光器作为泵浦源,实现了中红外3.8 μm MgO:PPLN 光参量振荡(OPO)激光输出。在泵浦源中,采用分布式反馈激光器(DFB)作为种子源来实现光纤激光窄线宽的调制,实现线宽2.5 nm到0.1 nm的压缩,最大平均输出功率可达40 W。进一步对不同泵浦线宽条件下中红外3.8 μm MgO:PPLN OPO激光进行研究,最终在泵浦功率为18.1 W、线宽为0.1 nm、重频为1 MHz、脉宽为2 ns时,获得了最高平均输出功率为2.06 W的3822.5 nm激光输出,光-光转换效率为11.38%,光束质量为M2=2.34,提高了窄线宽泵浦对中红外MgO:PPLN OPO激光输出效率。
光纤激光器 MgO:PPLN 光参量振荡器 fiber laser MgO:PPLN optical parametric oscillator 
中国光学
2021, 14(2): 361
作者单位
摘要
1 长春理工大学 吉林省固体激光技术与应用重点实验室,吉林 长春 130022
2 吉林省计量科学研究院 吉林省计量测试仪器与技术重点实验室,吉林 长春 130103
为了探究提高500 nm附近激光高准确度应用的理论和技术依据,本文采用双泵浦源复合腔结合非线性和频变换,实现腔内两种波长基频光无增益竞争,可提高基频光输出功率,同时在复合腔内进行多次非线性频率变换,通过调控基频光注入功率比,使腔内光子数配比达到1∶1,从而有效提高了光-光转换效率及和频输出功率。对首次建立的理论模型进行了实验验证,分别采用Nd:YAG和Nd:YVO4作为增益介质获取946 nm和1064 nm基频光输出,LBO为和频晶体;通过双泵浦源结构实现946 nm和1064 nm基频光无增益竞争,调节注入LBO光功率,对比注入功率比不同时的和频转换效率及输出功率,最终在基频光注入功率比为1.48∶1(即腔内光子数配比为1∶1)时获得最大输出功率923 mW的501 nm青光。
双泵浦复合腔 功率比 青光激光器 dual-pump complex cavity power ratio cyan laser 
中国光学
2021, 14(2): 329
作者单位
摘要
长春理工大学 固体激光技术与应用吉林省重点实验室,吉林 长春 130022
为了研究硅基QPD在不同能量密度、不同脉宽激光辐照下的损伤面积、形貌,基于二维显微测量技术,测量了硅基QPD单一象限的损伤面积、形貌随激光能量密度和脉宽的变化。结果表明,在毫秒脉冲激光作用下,硅基QPD产生表面剥落、褶皱、裂纹、熔坑等损伤效果,且主要受入射激光功率密度影响,损伤面积随激光能量密度逐渐增加,随脉宽增加逐渐降低。通过实测分析,得出了不同激光脉宽下,硅基QPD表面形貌损伤阈值。激光脉宽为0.5 ms,能量密度为15.79 J/cm2时,硅基QPD出现熔融损伤;而脉宽为1.0、1.5、2.0、3.0 ms时,硅基QPD出现表面剥落的能量密度值为14.12、33.94、39.76、47.62 J/cm2
长脉冲 硅基四象限探测器 损伤形貌 损伤阈值 long pulse silicon-based quadrant photo-detector damage morphology damage threshold 
红外与激光工程
2021, 50(4): 20200455
作者单位
摘要
长春理工大学 理学院, 长春 130022
提出了一种紧凑型、声光调Q、高功率的4.1 μm中红外内腔式氧化镁掺杂的周期性极化铌酸锂晶体光参量振荡激光系统.基于内腔单谐振光参量振荡器动力学模型, 对内腔光参量振荡器的阈值倍数及下转换效率的影响因素进行分析, 提出实验中对光参量振荡阈值调节的办法, 优化了大功率情况下光参量振荡的下转换效率.引入共振泵浦与单端键合晶体方式提高了大功率泵浦的热稳定性.基于光场传输理论与谐振腔稳定性理论, 并考虑增益介质热效应, 数值模拟了大功率泵浦注入时腔内基频光、信号光及闲频光的三波光场模式匹配, 以确保光参量振荡器在高功率下稳定运转.对光参量振荡阈值进行调节, 提高了参量光的下转换效率, 最终得到4.125 μm的中红外高重频脉冲瓦级激光输出, 激光重复频率1~100 kHz可调, 脉冲宽度小于9 ns, 最高单脉冲能量36.7 J, 最高峰值功率4.257 kW, 最高输出功率为1.12 W, 其对应的下转换效率为29.7%, 最大光光转换效率为4.26%.
固体激光器 中红外激光 内腔式光学参量振荡器 高功率 Solid state laser Mid-infrared Intra-cavity optical parametric oscillator MgO: PPLN MgO: PPLN High power 
光子学报
2019, 48(8): 0823002
王兰 1,2董渊 1高嵩 2陈奎一 2[ ... ]金光勇 1
作者单位
摘要
1 吉林省固体激光技术与应用重点实验室,吉林 长春 130022
2 吉林省计量科学研究院 吉林省计量测试仪器与技术重点实验室,吉林 长春 130103
钙钛矿材料具有发光量子产率高、自由载流子、结晶结构完美等优点,首先被提出应用于太阳能电池领域,并在近几年得到快速发展,研究也逐渐向电致发光、激光等领域拓展。本文介绍了钙钛矿材料在激光领域的研究进展,着重从4个部分进行叙述: 可调节波长范围宽的钙钛矿激光器、稳定性更好的钙钛矿激光器、具有紫外光以及新波长激光输出潜力的钙钛矿激光器、具有非线性光学特性的钙钛矿激光器。列举了多种钙钛矿材料的制备方法及其光学特性; 总结了现有钙钛矿激光器的结构特点以及输出模式; 剖析了钙钛矿材料在激光领域广泛应用存在的问题,同时对钙钛矿激光器的发展前景进行了分析。为钙钛矿材料在激光领域的进一步研究提供参考。
钙钛矿 激光 紫外 稳定性 perovskite laser ultraviolet stability 
中国光学
2019, 12(5): 993
Author Affiliations
Abstract
1 Jilin Key Laboratory of Solid Laser Technology and Application, School of Science, Changchun University of Science and Technology, Changchun 130022, China
2 Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
We examined a 1514 nm eye-safe passively Q-switched self-optical parametric oscillator. The nonlinear crystal is an a-cut Nd:MgO:PPLN crystal, and the size of the crystal was 6 mm × 2 mm × 30 mm with 0.4 at.% Nd3+ doped and a grating period of 29.8 μm. When the crystal absorbed 12.8 W, the output maximum single-pulse energy reached 39 μJ, and a pulse width of 6.1 ns at a repetition rate of 5.4 kHz was obtained. The peak power was 6 kW, giving a slope efficiency of 42%.
140.3540 Lasers, Q-switched 190.4970 Parametric oscillators and amplifiers 140.3480 Lasers, diode-pumped 140.3460 Lasers 
Chinese Optics Letters
2019, 17(11): 111404

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!