王鸿飞 1,2,3马士青 1,2闵雷 1,2王帅 1,2[ ... ]杨平 1,2,*
作者单位
摘要
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学电子电气与通信工程学院,北京 100049
4 电子科技大学医学院附属肿瘤医院/四川省肿瘤医院,四川 成都 610209
5 西华大学航空航天学院,四川 成都 610209
现有图像增强算法在处理肺部计算机断层扫描(CT)图像时,易产生不自然的外观,引入不必要的人工伪影,并会产生洗去效应。针对此问题,本团队提出了一种基于图像分割和全变分模型的图像增强算法。该算法将图像分割为前景和背景,先对前景肺实质图像的直方图进行修改,然后根据修改的直方图对图像进行伽马拉伸,得到对比度增强的前景图像,再将其与背景图像融合作为全变分模型的输入;然后通过全变分能量泛函将图像分解为纹理层和结构层,对纹理层进行小波阈值去噪,将去噪后的纹理层与结构层进行融合得到增强图像。实验结果的主观分析和客观评价指标均表明,该算法不仅可以有效抑制图像中的伪影噪声,解决现有算法过度增强肺CT图像的问题,还可以充分提高图像的对比度,并保留图像的自然外观显示、纹理细节和边缘特征等信息。
医用光学 图像增强 图像分割 伽马变换 全变分模型 小波变换 
中国激光
2022, 49(20): 2007210
闵雷 1,2,3,4,*杨平 1,3,4许冰 1,3,4刘永 2
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川成都 610209
2 电子科技大学光电科学与工程学院, 四川成都 610054
3 中国科学院光电技术研究所, 四川成都 610209
4 中国科学院大学, 北京 100049
平面复眼成像系统利用多个子孔径对场景进行成像, 由于子孔径大小和图像传感器空间采样率的限制, 各子孔径图像质量较差。如何融合多个子孔径图像来获得高分辨率图像是亟需解决的问题。多图像超分辨理论利用多幅具有互补信息的图像来重构高空间分辨率图像, 然而现有理论通常采用过于简化的运动模型, 这种简化的运动模型对平面复眼成像并不完全适用。若直接把现有多图像超分辨理论用于平面复眼分辨率增强, 不准确的相对运动估计将降低图像分辨率增强性能。针对这些问题, 本文在变分贝叶斯框架下改进了现有多图像超分辨理论中的运动模型, 并把导出的联合估计算法用于平面复眼分辨率增强。仿真数据实验和真实复眼数据实验验证了推荐方法的正确性和有效性。
平面复眼 分辨率增强 运动模型 变分贝叶斯 多图像超分辨 planar compound eye resolution enhancement motion model variational Bayesian multi-image su-per-resolution 
光电工程
2020, 47(2): 180661
闵雷 1,2,3,4,*杨平 1,3,4许冰 1,3,4刘永 2
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川成都 610209
2 电子科技大学光电科学与工程学院, 四川成都 610054
3 中国科学院光电技术研究所, 四川成都 610209
4 中国科学院大学, 北京 100049
多帧图像超分辨理论是通过融合多帧低分辨率图像的信息来重构高空间分辨率图像。准确估计低分辨率图像的模糊核是进行有效信息融合的先决条件。传统超分辨方法通常假设模糊核已知且采用固定的高斯滤波模糊核, 并且模型参数需要费时的手动调整。本文在变分贝叶斯框架下获得相应的超分辨算法, 该算法对高分辨率图像、模糊核和模型参数同时进行最优估计。对比实验表明, 模糊核自适应估计的盲超分辨方法总体性能优于现有的变分贝叶斯框架下的图像超分辨方法, 特别是在高信噪比场景, 推荐方法优势更加明显。
盲超分辨 分辨率增强 变分贝叶斯 模糊核 Kullback-Leibler散度 blind super-resolution resolution enhancement variational Bayesian blur kernel Kullback-Leibler di-vergence 
光电工程
2019, 46(6): 180149

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!