作者单位
摘要
1 内蒙古师范大学地理科学学院, 内蒙古 呼和浩特 010022
2 内蒙古自治区遥感与地理信息系统重点实验室, 内蒙古 呼和浩特 010022
3 内蒙古自治区蒙古高原灾害与生态安全重点实验室, 内蒙古 呼和浩特 010022
4 Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulan Bator, Mongolia
5 Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulan Bator, Mongolia
针叶害虫爆发将会削减林木针叶水分和叶绿素含量, 导致林木冠层颜色发生变化, 甚至使林木死亡。 这严重威胁森林生态系统健康安全。 通过遥感技术监测受害林木冠层颜色变化, 可对虫害林生态系统安全进行快速评估。 因此, 虫害林木冠层不同颜色判别研究极为重要。 基于此, 选择蒙古国肯特省和杭爱省的3个雅氏落叶松尺蠖爆发林区(binder, Ikhtamir和Battsengel)为试验区, 开展落叶松受害过程冠层颜色变化信息调查和光谱测量试验, 并利用高光谱特征和机器学习算法判别了落叶松冠层不同颜色。 首先通过虫害灾区林木调查对冠层颜色进行了分色, 即绿色、 黄色、 红色和灰色。 同时根据不同危害程度下林木冠层不同颜色, 从试验区选取66棵样本树, 并对其冠层进行了光谱测量。 其次以样本树光谱反射率曲线为基础数据, 计算平滑光谱反射率(SSR)、 微分光谱反射率(DSR)和平滑光谱连续小波系数(SSR-CWC)等高光谱特征, 并借助方差分析法揭示了这些高光谱特征对冠层不同颜色的敏感性。 再次采用Findpeaks函数和连续投影算法结合模式(Findpeaks-SPA)快速提取了SSR, DSR和SSR-CWC等高光谱特征的敏感特征。 最后通过随机森林分类(RF)和支持向量机分类(SVMC)算法构建雅氏落叶松尺蠖虫害林木冠层不同颜色判别模型, 并与费歇尔判别(FD)模型进行比较, 评价了判别模型精度。 研究发现: (1)可见光的多个波段, SSR-CWC对冠层不同颜色表现出了极显著的敏感性。 (2)基于Findpeaks-SPA模式能够有效提取敏感高光谱特征, 该模式不仅大大降低高光谱特征数量, 而且改善了多重共线性问题。 (3)判别冠层不同颜色最有潜力的高光谱特征为SSR-CWC, 其Daubechies系、 Biorthogonal系、 Coiflets系和Symlets系的最优小波基分别为db9, bior1.5, coif1和sym4, 其中db9-RF(SVMC)达到了最高的判别总体精度(0.900 0)。 这比SSR-RF(SVMC)和DSR-RF(SVMC)模型分别提高了0.250 0(0.450 0)和0.250 0(0.100 0)。 (4)基于DSR和SSR-CWC的RF和SVMC模型判别精度优于FD模型, 尤其db9-RF(SVMC)模型更为明显, 其判别总体精度和Kappa系数比db9-FD模型分别提高了0.150 0和0.167 0。 可见, 在虫害林木冠层不同颜色判别中db9-RF(SVMC)有极大潜力。 这为林业和生态安全相关部门对森林虫害严重程度进行遥感监测提供重要参考和实用价值。
雅氏落叶松尺蠖 高光谱特征 落叶松冠层颜色 判别模型 Erannis jacobsoni Djak Hyperspectral features Larch canopy color Discriminant model 
光谱学与光谱分析
2020, 40(9): 2925
黄晓君 1,2,3,4,*颉耀文 1包玉海 2,3包刚 2,3[ ... ]包玉龙 2,3,4
作者单位
摘要
1 兰州大学资源环境学院, 甘肃 兰州 730000
2 内蒙古师范大学地理科学学院, 内蒙古 呼和浩特 010022
3 内蒙古自治区遥感与地理信息系统重点实验室, 内蒙古 呼和浩特 010022
4 内蒙古自治区蒙古高原灾害与生态安全重点实验室, 内蒙古 呼和浩特 010022
害虫引起的林木失叶会严重威胁森林健康。 森林虫害遥感监测与评价中快速、 准确获取失叶信息十分重要。 基于此, 针对雅氏落叶松尺蠖引起的落叶松失叶灾象, 在蒙古国开展受害林木光谱测量和失叶率估测试验。 首先通过光谱实测数据的处理, 得到微分光谱反射率(DSR, 对光谱反射率求一阶导数)和微分光谱连续小波系数(DSR-CWC, 利用Biorthogonal, Coiflets, Daubechies和Symlets等4种小波系的36个母小波基函数对DSR进行连续小波变换), 分析DSR和DSR-CWC对失叶率的敏感性, 进而借助MATLAB的Findpeaks(Fp)函数自动寻找DSR和DSR-CWC的敏感波段并确定其对应的敏感特征, 然后利用连续投影算法(SPA)对敏感特征进行降维处理, 最后利用敏感特征建立偏最小二乘回归(PLSR)和支持向量机回归(SVMR)失叶率估测模型, 并与逐步多元线性回归(SMLR)模型进行比较。 研究结果表明: ①DSR-CWC与DSR相比, 对失叶率变化的敏感性更显著且敏感波段亦较多, 其敏感波段主要分布于三个吸收谷(440~515, 630~760和1 420~1 470 nm)和三个反射峰(516~620, 761~1 000和1 548~1 610 nm)范围内。 说明DSR-CWC能够增强光谱反射和吸收特征。 ②Fp与SPA结合模式(Fp-SPA)不仅能够快速、 客观选择敏感特征, 而且对特征有效降维, 是一种光谱敏感特征选择的有效方法。 ③4种小波系的最优母小波基分别为bior24, coif2, db1和sym6, 其中db1的失叶率估测性能最稳定, 精度最高。 ④对DSR进行连续小波变换能够提高失叶率估测精度, 在DSR-CWC中db1-PLSR模型(R2M=0934 0, RMSEM=0089 0)提高的最为显著, 比DSR-PLSR的R2M提高了0047 5并且比DSR-PLSR的RMSEM降低了0024 9。 ⑤利用DSR-CWC建立的PLSR和SVMR模型估测精度类似, 其精度优于SMLR模型。 可见, DSR-CWC比DSR失叶率估测更有潜力, 可为森林虫害遥感监测中提供重要参考。
雅氏落叶松尺蠖 落叶松失叶率 微分光谱连续小波系数 Findpeaks函数 连续投影算法 Erannis jacobsoni Djak Leaf loss rate of larch Differential spectral continuous wavelet coefficie Findpeaks function Continuous projection algorithm 
光谱学与光谱分析
2019, 39(9): 2732
黄晓君 1,2,3,*颉耀文 2包玉海 1,3
作者单位
摘要
1 内蒙古师范大学地理科学学院, 内蒙古 呼和浩特 010022
2 兰州大学资源环境学院, 甘肃 兰州 730000
3 内蒙古自治区遥感与地理信息系统重点实验室, 内蒙古 呼和浩特 010022
近年来蒙古国雅氏落叶松尺蠖灾害不断加剧, 逐渐逼近大兴安岭地区, 将威胁我国北方森林生态系统安全。 以现代遥感监测方法替代传统检测方法, 及早掌握该虫害发生发展规律对防控有重要意义。 为快速、 大范围遥感监测雅氏落叶松尺蠖灾害, 利用光谱分析技术研究了该害虫危害下落叶松受害程度检测模型。 通过实测健康和轻度、 中度、 重度受害落叶松光谱, 计算与比较不同受害程度落叶松原始光谱和去除包络线光谱的敏感度, 揭示光谱敏感波段及去除包络线光谱敏感性。 然后对去除包络线光谱进行一阶导数变换获得光谱特征参数并分析其随受害程度的变化特征, 构建基于CART(分类与回归树)算法的落叶松受害程度光谱检测模型。 研究表明: 去除包络线光谱敏感性比原始光谱更显著, 尤其在480~520 nm(蓝边)、 640~720 nm(红谷、 红边)、 1 416~1 500 nm(短波红外谷)等波段内光谱敏感度介于0.1~2.0, 而且出现了敏感峰现象。 随受害程度增加, 去除包络线光谱敏感性增强趋势比原始光谱更明显; 在蓝边波段上去除包络线光谱敏感峰位置向短波方向移动, 即502 nm→490 nm, 而在红谷及红边、 短波红外谷等波段上光谱敏感峰位置向长波方向移动, 即664 nm→672 nm和1 436 nm→1 448 nm; 红谷位置和短波红外谷位置归一化反射率以及红谷和短波红外谷面积呈上升趋势。 在蓝边与红边波段内去除包络线光谱一阶导数对受害程度有明显响应, 出现了波峰现象。 随害虫危害程度加剧红边位置蓝移(718 nm→700 nm), 红边斜率及面积和蓝边斜率及面积呈下降趋势。 基于此, 利用红边斜率、 红谷位置和短波红外谷位置归一化反射率、 红谷和短波红外谷面积、 蓝边斜率及面积等去除包络线光谱特征参数构建的CART模型对落叶松受害程度有很好的检测能力。 与多元线性回归模型相比, CART模型检测精度更高, 其Kappa系数达0.875。 研究结果对雅氏落叶松尺蠖灾害的防治有参考价值。
雅氏落叶松尺蠖 光谱敏感性 去除包络线光谱特征 落叶松受害程度 分类与回归树(CART) Jas’s larch inchworm Spectral sensibility Spectral characteristics of continuum removal Larch damaged level Classification and regression tree (CART) 
光谱学与光谱分析
2018, 38(3): 905

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!