作者单位
摘要
1 天津理工大学 理学院, 天津 300384
2 中原大学 理学院, 郑州 450007
在连续谱激光(532 nm)照射下, 观察到联苯衍生物有光折变现象。本文制备了(4-羟基苯基)-5-嘧啶醇、4′-羟基-4-联苯基腈、3-氨基-4-苯基苯酚和4, 4′-Biphenol两类实验样品, 将联苯衍生物分别溶于N, N-二甲基甲酰胺(DMF)溶剂中, 获得溶液浓度比为2wt%的4个溶液样品; 将联苯衍生物溶于无水乙醇通过常温慢速挥发, 制成了4个单晶体样品。在激光照射下, 2-(4-羟基苯基)-5-嘧啶醇、4′-羟基-4-联苯基腈和3-氨基-4-苯基苯酚3个溶液样品中观察到周期性对称的明暗相间的空间条纹。无论如何增大激光功率密度, 在4,4′-Biphenol溶液中, 都没有观察到类似的空间条纹。在强光功率密度照射下, 2 -(4-羟基苯基)-5-嘧啶醇、4′-羟基-4-联苯基腈、3-氨基-4-苯基苯酚3个单晶体出现光斑畸变, 同样在4, 4′-双酚单晶中没有观察到光斑畸变。在激光照射下或无光照射时, 测量到具有非对称基团的联苯衍生物样品的光电流与暗电流相差大约为10 nA。光斑畸变的伸长方向与激光的偏振态有关。在溶液和单晶样品中, 光斑畸变的光功率密度的阈值分别是100 W/cm2和10 W/cm2。上述实验结果可认为对称的周期性明暗空间条纹是由光折变效应引起的, 激光通过样品时, 由于联苯衍生物的极性分子受光电场的作用, 在光照区与非光照区产生空间电荷场, 由该空间电荷场引起样品折射率变化, 从而形成明暗相间的空间条纹。本文首次发现联苯衍生物是一种光折变材料。
光折变效应 空间条纹 空间电荷场 联苯衍生物 photorefractive effect spatial stripes space charge field biphenyl derivatives 
中国光学
2019, 12(2): 362
作者单位
摘要
1 聊城大学生命科学学院, 山东 聊城 252000
2 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012
3 中国科学院地理科学与资源研究所, 北京 100101
抗酸化微生物复合菌系(AAMC)通过多种耐酸、 嗜酸微生物的协同作用, 在克服由于酸化抑制导致的餐厨垃圾堆肥发酵崩溃问题方面效果显著, 接种AAMC可明显加速有机物质降解。 然而生物堆肥存在有机物彻底降解和碳重新固定(形成稳定的腐殖质类物质)两种途径, 有机质降解与腐殖质形成具有互动关系, 为腐殖质形成提供原材料。 为探究接种AAMC对餐厨垃圾堆肥腐殖质品质的影响, 采用树脂柱法进行腐殖质分组, 分别研究接种AAMC对富里酸、 亲水性组分和胡敏酸3个组分分子结构复杂度和稳定性的影响。 设接种组(AAMC)、 加碱组(MgO和K2HPO4)和自然堆肥组3个处理, 采用三维荧光技术(EEM)结合两种定量表征方法区域体积积分(FRI)和平行因子分析(PARAFAC), 实现对富里酸、 亲水性组分和胡敏酸3个组分光谱学性质定量表征的准确性和完整性。 FRI结果显示, 堆肥结束后3个腐殖质组分中表征简单分子结构组分例如羧基或蛋白源结构区域的Pi, n值均降低, 接种组降低幅度显著大于对照组, 降低幅度大小排序为: 接种组>加碱组>对照组。 表征高芳香度和缩聚程度的胡敏酸类物质区域的Pi, n值均上升, 且接种组上升幅度显著高于其他两处理, 上升幅度排序也为: 接种组>加碱组>对照组。 PARAFAC结果显示, 富里酸和胡敏酸组分又可分成短波长胡敏酸、 长波长胡敏酸和色氨酸或类蛋白类物质3个组分, 亲水性组分又可分为短波长胡敏酸、 色氨酸和酪氨酸3个组分。 堆肥结束后, 表征短波胡敏酸和长波胡敏酸组分的Fmax升高, 而表征色氨酸等类蛋白类物质组分的Fmax降低, 升高或降低的幅度接种组最高, 显著高于加碱组和对照组。 综上结果说明接种AAMC可明显促进腐殖质组分子结构复杂化、 稳定化, 提高腐殖质组分高芳香度和缩聚程度, 改善餐厨垃圾堆肥腐殖质品质, 利于施用堆肥土壤保水保肥。 这可能与AAMC具有高的小分子有机酸降解、 转化能力, 可规避酸累积对堆肥微生物活性的抑制导致的堆肥腐殖化效率低的问题密切相关。 添加化学缓冲剂也能一定程度促进腐殖质组分稳定化、 结构复杂化和提高堆肥腐殖化程度。 这可能与堆料pH的改善, 使得小分子有机酸可被持续降解和转化, 有利于堆肥腐殖化进程有关。
堆肥 餐厨垃圾 抗酸化 腐殖质组分 平行因子分析 Composting Food waste Anti-acidification Humicfractions Parallel factor analysis 
光谱学与光谱分析
2019, 39(11): 3533

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!