Author Affiliations
Abstract
1 Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania
2 Femtika, Sauletekio Ave. 15, Vilnius LT-10224, Lithuania
3 Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, Vilnius LT-10223, Lithuania
4 Department of Chemical Engineering and Technology, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale. The fabrication method includes laser lithography of hybrid organic-inorganic materials with subsequent heat treatment leading to a variety of crystalline phases in 3D structures. In this work, it was examined a series of organometallic polymer precursors with different silicon (Si) and zirconium (Zr) molar ratios, ranging from 9:1 to 5:5, prepared via sol-gel method. All mixtures were examined for perspective to be used in 3D laser manufacturing by fabricating nano- and micro-feature sized structures. Their spatial downscaling and surface morphology were evaluated depending on chemical composition and crystallographic phase. The appearance of a crystalline phase was proven using single-crystal X-ray diffraction analysis, which revealed a lower crystallization temperature for microstructures compared to bulk materials. Fabricated 3D objects retained a complex geometry without any distortion after heat treatment up to 1400 °C. Under the proper conditions, a wide variety of crystalline phases as well as zircon (ZrSiO4 - a highly stable material) can be observed. In addition, the highest new record of achieved resolution below 60 nm has been reached. The proposed preparation protocol can be used to manufacture micro/nano-devices with high precision and resistance to high temperature and aggressive environment.
3D nanostructures additive manufacturing crystalline phases laser lithography 3D printing high resilience inorganic materials SZ2080TM 
Opto-Electronic Advances
2022, 5(5): 210077
作者单位
摘要
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
direct laser writing photo polymerization stimulated emission depletion optical super-resolution 3D nanostructures 
光电工程
2017, 44(12): 1254
作者单位
摘要
暨南大学光子技术研究院,广东省光纤传感与通信技术重点实验室,广州 510632
随着纳米技术的不断发展,各行业领域对纳米尺寸结构的加工需求与日剧增,激光直写加工技术作为一项重要的三维微纳结构加工手段,在多个现代科学技术领域得到了广泛应用。针对三维微纳结构制备,双光束超分辨激光加工技术,结合双光子聚合(TPP)过程与受激发射损耗(STED)纳米显微技术的原理,实现了超光学衍射极限的加工分辨率,为三维纳米结构加工技术及其应用提供了新的发展方向。本文将阐述基于双光束超分辨激光加工技术超光学衍射极限的基本原理,并回顾该技术在改善加工线宽及分辨率等方面的研究进展,以及在相关领域中的应用。最后就如何实现低成本、高效率、大面积、多功能性材料加工存在的挑战和未来发展方向进行了讨论。
激光直写加工 光聚合 受激辐射损耗 超分辨光学技术 三维纳米结构 direct laser writing photo polymerization stimulated emission depletion optical super-resolution 3D nanostructures 
光电工程
2017, 44(12): 1133

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!