旨在设计一种用于在平面上测试后坐力的设备,分析基于平面接触安装的设备对支承部位的施力情况。该设备核心采用压电传感器,利用其高灵敏度和快速响应特性,实现对后坐力信号的精准捕捉。通过相关力学原理建立后坐力数学模型,描述后坐力与各影响因素间的定量关系。借助动力学分析,深入剖析设备在测试过程中的动力学行为,明确各部件受力和运动状态,分析各参数对测试结果的影响情况,优化结构设计。并进行试验验证,对比试验数据与理论分析数据,验证设备设计的合理性与准确性。
后坐力 后坐力测试 动力学分析 有限元分析 recoil force recoil force testing dynamic analysis finite element analysis
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国人民解放军63861部队,吉林 白城 137000
为简化某地基望远镜主镜的支撑方式,兼顾保障望远镜成像质量和精度,研究了460 mm口径单轴支撑碳化硅主镜的优化设计。首先,确定了相近线胀系数材料的单轴支撑方案和扇形的主镜背部结构,针对支撑结构和材料特性,利用先进的碳化硅烧结技术可制备异性结构的特性,结合优化设计理论,在满足主镜面型精度的前提下,对主镜进行了轻量化设计。优化后的主镜质量仅为4.82 kg,主镜水平状态下面型仿真分析RMS为λ/51.4。经实际工程验证,主镜支撑后水平状态下面型精度检测结果优于λ/42,轻量化效果显著并满足实际使用要求。本研究为工程项目提供了理论基础和技术储备。
碳化硅主镜 轻量化 有限元分析 优化设计 SiC mirror lightweight finite element analysis optimization

西南交通大学信息科学与技术学院,四川 成都 611756
Overview: In the fields of engineering and computational science, finite element analysis is a commonly used numerical simulation tool. Its accuracy and efficiency directly affect the reliability and computational cost of engineering design. However, traditional adaptive mesh refinement technology faces certain challenges in the pursuit of high-precision and high-efficiency collaborative optimization. Especially when dealing with engineering problems with singular fields or complex boundary conditions, traditional iterative methods often show the problems such as uneven gradient error distribution and slow convergence. These limitations not only affect the accuracy of the calculation results, but also limit the application of finite element analysis in complex problems. To address the above problems, this study proposes an adaptive mesh partitioning framework based on the attention fusion mechanism, namely GATv2-Transformer fusion network (GTF-Net). This method transforms the mesh partitioning problem into a node classification problem. Each mesh node is regarded as a node in the graph, and the edges between nodes represent the relationship between units. The relationship between mesh units is modeled using graph neural networks, thereby achieving adaptive adjustment of mesh partitioning. Graph neural networks automatically adjust the mesh structure by learning these relationships. The network innovatively combines the graph attention mechanism with the Transformer architecture, and realizes the dynamic coupling of local geometric features and global physical fields through multi-head cross attention modules, effectively improving the representation ability of complex environments. The analytical solution of multiple equations is introduced into the network training, and a multi-task learning objective is constructed to ensure the generalization performance of the model under different physical field characteristics. The typical optical waveguide transmission problem example and the solution results of the first-kind Bessel function show that compared with the traditional skFem method, GTF-Net has improved the calculation speed while reducing the standard deviation of the gradient error by more than 20% (the Bessel function case is reduced by 23.8%, and the optical waveguide case is reduced by 85.9%). The experimental results show that the network significantly improves the matching degree between the grid density distribution and the physical field changes through nonlinear mapping of the feature space, and the method has a certain generalization ability and can adapt to different types of problems and application scenarios. This method provides a new deep learning solution for adaptive finite element analysis in engineering calculations, and also opens up a new technical path for the development of data-driven intelligent finite element analysis.
自适应网格细化 GATv2-Transformer融合网络 有限元分析 深度学习 adaptive mesh refinement GATv2-Transformer fusion network finite element analysis deep learning
上海硬X射线自由电子激光装置(Shanghai HIgh-repetition-rate XFEL aNd Extreme Light Facility,SHINE)具有高亮度、全相干性和高重复频率等特点。对于高重频硬X射线进行聚焦时,复合折射透镜(Compound Refractive Lens,CRL)需要承受高热负载,甚至会出现由高热应力引起的光学器件性能失效问题。为了确保CRL聚焦镜的热应力在许可限定范围内和CRL聚焦镜在高重频X射线下保持良好的光学性能,采用有限元方法(Finite Element Method,FEM)进行热分析,优化了X射线的最大许可重频,以降低CRL聚焦镜出现高热应力的风险,从而有效预防其光学性能的失效。通过优化设计,当光子能量为7 keV时,CRL聚焦镜最大热应力降低了93%,从1 008 MPa降低至74 MPa,有效预防了CRL聚焦镜高热应力问题。在实现X射线工作重复频率最大化和控制其热应力在许可范围内的同时,也确保了CRL聚焦镜在高重复频率下保持其良好的光学性能。
复合折射透镜 有限元分析 热分析 热应力 高重频 Compound refractive lens Finite element method Thermal analysis Thermal stress High repetition rate
1 天津津航技术物理研究所 天津市薄膜光学重点实验室,天津 300308
2 同济大学 先进微结构材料教育部重点实验室,上海 200092
激光技术的发展给飞行器红外光学系统带来极大挑战,而光学窗口是红外光学系统抗激光损伤的最薄弱环节。文中针对ZnS光学窗口设计了多层薄膜结构,使其在提高3~5 μm波段光学透过率的同时,具备对1.06 μm激光的防护能力。首先,构建了激光作用多层膜的光热响应模型,并通过仿真计算获得了膜层厚度、折射率和消光系数等参数对光学窗口薄膜的光学性能和热效应的影响关系。研究结果表明,以HfO2/SiO2作为多层膜基本膜堆,当最外三层薄膜物理厚度误差在−3.3%~3.3%范围时,膜基界面温度变化最大为27 ℃,1.06 μm波长处反射率和3~5 μm波段内平均透过率变化均小于1‰,对多层膜光热性能影响较小;当两种膜层材料的折射率差值增大时,膜层内部电场的变化影响了薄膜的吸收率,使膜基界面温度呈现出先降低后升高的现象;多层膜的膜基界面温度随膜层材料消光系数提高而升高,且低折射率材料对激光热效应的影响权重更大。研究结果可以为激光防护/中红外增透多层膜的抗激光损伤设计和制备提供参考。
激光热效应 有限元分析 多层膜 折射率 厚度误差 laser thermal effect finite element analysis multilayer reflective index thickness error 红外与激光工程
2025, 54(5): 20240492
红外与激光工程
2025, 54(5): 20240529
红外与激光工程
2025, 54(5): 20240537
强激光与粒子束
2025, 37(4): 044003
1 西安建筑科技大学 理学院,陕西 西安 710055
2 西安建筑科技大学 应用物理研究所,陕西 西安 710055
利用多物理场耦合分析软件对激光作用于金属材料TC4材料时的热效应进行数值模拟计算,从热传导理论出发,构建了高斯分布脉冲激光单点作用TC4材料的二维轴对称瞬态物理模型,建立了钛合金表面激光加工温度场分布理论模型。通过论述激光烧蚀金属表面主要发生的激光加工机理和物理现象,建立了激光烧蚀金属材料表面的理论模型以及求解材料温度场分布的热传导方程,并通过有限元仿真进行研究,得到了光斑半径、激光功率、激光脉宽对于钛合金表面热效应的影响结果,结果表明在光斑半径为0.3mm,激光功率为1500W,脉宽为5000ns时取得的加工效果更佳。此研究为下一步有限元模拟和实验研究钛合金表面激光加工提供了理论依据。
激光加工 热效应仿真 有限元分析 高斯激光 TC4 TC4 laser processing thermal effect simulation finite element analysis gaussian laser