作者单位
摘要
安徽农业大学信息与计算机学院, 安徽 合肥 230036
可溶性固形物含量(SSC)是决定鲜桃风味和品质的重要成分。 高光谱影像的特征提取为无损检测可溶性固形物含量提供了数据基础和方法路径。 先前的研究表明, 基于多光谱、 荧光谱、 近红外光谱、 电子鼻的水果内部品质评估取得较好的结果。 但是, 由于缺少多特征融合, 从而限制了水果品质的精准估测。 为此, 提出了一种基于堆栈自动编码器-粒子群优化支持向量回归(SAE-PSO-SVR)模型预测鲜桃可溶性固形物含量。 首先, 利用高光谱影像提取光谱信息、 空间信息及空-谱融合信息。 其次, 设置普适性堆栈自动编码器(SAE)提取光谱信息、 空间信息及空-谱融合信息的深层特征。 最后, 将深层特征作为粒子群优化支持向量回归(PSO-SVR)模型的输入数据进行鲜桃可溶性固形物含量的预测。 其中, 对于光谱信息作为输入的SAE模型, 设计了453-300-200-100-40, 453-350-250-150-50, 453-350-250-100-60的三个隐含层结构。 对于空间信息作为输入的SAE模型, 设计了894-700-500-300-50, 894-650-350-200-80, 894-800-700-500-100的三个隐含层结构。 对于融合信息作为输入的SAE模型, 设计了1347-800-400-200-40, 1347-750-550-400-100, 1347-700-500-360-150的三个隐含层结构。 实验结果表明, 对于输入数据分别为光谱信息、 空间信息及融合信息的SAE模型, 结构为453-300-200-100-40, 894-800-700-500-100和1347-750-550-400-100的模型效果较好, 而且基于融合信息的模型预测精度明显优于基于光谱信息或者图像信息的模型。 为了验证模型的普适性, 利用结构为1347-750-550-400-100的SAE模型提取融合信息的深层特征估测不同品种鲜桃的可溶性固形物含量并进行可视化。 结果表明, 基于结构为1237-650-310-130的SAE-PSO-SVR模型预测效果最好(R2=0.873 3, RMSE=0.645 1)。 因此, 所提出的SAE-PSO-SVR模型提高了鲜桃可溶性固形物含量的估计精度, 为鲜桃的其他成分检测提供了技术支撑。
可溶性固形物含量 高光谱影像 深层特征 支持向量回归 鲜桃 Solid content Hyperspectral image Deep feature Support vector regression Peach 
光谱学与光谱分析
2021, 41(11): 3559
作者单位
摘要
北京林业大学林学院, 北京 100083
重金属污染是土壤环境污染中亟待解决的问题之一, 重金属通过土壤向植物富集, 危及人体健康, 对生态环境产生巨大隐患。 传统的土壤污染监测以化学方法为主, 不仅费时费力且监测范围有限, 而基于植被高光谱技术的土壤重金属监测方法能够快速准确地获取土壤重金属含量, 突破植被屏障, 提高土壤重金属监测效率。 近年来, 国内外许多学者致力于使用盆栽实验定量研究土壤污染物对植物光谱特征影响, 而野外环境下的实验研究相对缺少, 因此建立合适准确的野外土壤重金属预测模型具有重要意义, 为改善耕地土壤质量提供参考。 以北京市优势经济果树桃树为研究对象, 在研究区均匀设置了50个采样点, 利用FieldSpec 4便携式地物波谱仪测量桃树叶片光谱数据, 同时采集土壤样本带回实验室检测分析获得土壤重金属含量数据。 通过分析不同污染下桃树叶片在重金属胁迫下的叶片光谱特征, 计算不同土壤重金属与叶片光谱之间的相关关系, 确定土壤As元素与光谱反射率相关性更大, 因此选择土壤As元素计算其与不同植被指数之间的相关系数, 并用合适的植被指数构建土壤As元素预测模型。 结果表明: 污染区桃叶光谱反射率总体上比背景区的光谱反射率更高, 其中760~1 300 nm波长范围内对土壤重金属更加敏感, 土壤重金属对叶片红、 蓝、 黄边位置干扰不明显, 对红、 蓝、 黄边斜率敏感, 且均呈正向相关性。 光谱反射率与土壤Cr, Cu和Hg元素相关性较弱, 与As, Pb和Cd元素在某些波段范围内达到0.1级显著相关, 且总体相关曲线趋势相同, 相关性大小依次排序为As>Pb>Cd。 以相关性更强的土壤As元素与植被指数进行相关分析表明, 土壤As元素与PRI1和PRI3均显著相关。 使用SPSS数据分析软件以PRI1和PRI3为自变量, 土壤As元素为因变量分别进行回归分析, 检测结果发现, PRI3的指数预测模型(y=e43.644x-39.386, R2=0.937, RMSE=0.161)效果最好且具有更好的稳定性。
桃树叶片 光谱特征 土壤As元素 植被指数 回归模型 预测 Peach tree leaves Spectral characteristics Element As in soil Vegetation index Regression model Prediction 
光谱学与光谱分析
2021, 41(9): 2866
作者单位
摘要
华东交通大学机电与车辆工程学院, 水果智能光电检测技术与装备国家地方联合工程研究中心, 江西 南昌 330013
毛桃从果树上成熟到最后到达消费者手中, 中间需要经过采摘、 包装、 运输等一系列过程, 在每一个过程中都有可能产生碰伤果。 因此查看哪一个过程产生的碰伤果最多, 从而对加工过程进行针对性地改进就显得尤为重要。 纵观国内外高光谱技术在检测水果碰伤方面的应用, 绝大多数都是忽略图像特征而只使用了光谱特征, 基于图像特征结合光谱特征建模的少之又少。 其次在水果碰伤时间定性判别方面, 多以天数为间隔, 时间间隔较大意味着水果碰伤时间越久, 其变化越明显, 检测准确率也就越高, 目前尚缺乏有效方法对于碰伤时间较短的水果进行碰伤时间分类。 以90个模拟表面碰伤的毛桃为实验样本, 分别采集毛桃碰伤12, 24, 36和48 h后的高光谱图像。 毛桃样品的光谱特征提取是采用感兴趣区域的100个像素点的平均光谱以防止单个像素点的光谱信息与整体光谱信息差距较大; 通过主成分分析(PCA)对毛桃图像进行降维后选取最能体现毛桃碰伤的PC1图像, 在 PC1图像的权重系数曲线中波峰波谷处挑选出4个特征波长点(512, 571, 693和853 nm)作为特征图像, 特征图像灰度化操作后计算得到平均灰度值作为毛桃碰伤图像特征。 最后基于最小二乘支持向量机(LS-SVM)算法分别建立毛桃碰伤时间的光谱特征模型、 图像特征模型以及图像特征结合光谱特征模型共三种判别模型, 并且根据其分类准确率来判断模型的性能。 结果表明: 三种毛桃碰伤模型的分类准确率都随碰伤时间的增加而增加; 基于径向基核函数(RBF_kernel)建立的图像特征结合光谱特征的模型预测效果最好, 对碰伤12, 24, 36和48 h的毛桃样品识别正确率分别为83.33%, 96.67%, 100%和100%, 这可能是由于具有非线性特点的径向基核函数所建立的模型更加适合用于毛桃碰伤时间的分类。 图像特征结合光谱特征的模型能够较好地实现对水果碰伤时间的估计, 可为水果外部品质分选提供一定的参考和依据, 并对水果销售和深加工企业具有一定的借鉴意义。
高光谱成像 图像特征 光谱特征 最小二乘支持向量机 毛桃 碰伤时间 Hyperspectral imaging Image features Spectral features Least squares support vector machine Wild peach Bruising time 
光谱学与光谱分析
2021, 41(8): 2598
作者单位
摘要
华东交通大学机电与车辆工程学院, 水果智能光电检测技术与 装备国家地方联合工程研究中心, 江西 南昌 330013
糖度和硬度作为水蜜桃的两个重要指标, 决定其内部品质。 在运输或售卖期间, 水蜜桃果内水分流失, 表面开始松软进而腐烂, 内部品质发生变化。 研究旨在探讨可见/近红外光谱预测水蜜桃不同贮藏期糖度和硬度的可行性, 进一步预测水蜜桃的最佳贮藏期。 采用漫透射和漫反射方式采集4个贮藏阶段的水蜜桃光谱, 并测量糖度和硬度。 分析了4个阶段水蜜桃的平均光谱, 光谱强度随着贮藏天数增加而不断提高, 且在650~680 nm区域内受果皮颜色及色素的变化产生波峰偏移。 同时, 分析了糖度和硬度的变化, 糖度在贮藏期间逐渐提高, 硬度在贮藏期间快速下降, 最终糖度增加了3.31%, 硬度下降了58.8%。 采用多元散射校正、 S-G卷积平滑、 归一化处理及基线校正等预处理方法来减少噪声和误差对光谱的影响, 并使用无信息变量消除(UVE)和连续投影算法(SPA)筛选特征波长, 最后利用偏最小二乘回归(PLS)分别建立糖度和硬度的预测模型。 分析糖度、 硬度的PLS回归系数与平均光谱的波形发现, 糖度的高回归系数分布在光谱多处, 而硬度的该系数均在波峰波谷附近。 SPA和UVE筛选的特征波长建立的糖度模型效果不佳, 而硬度模型效果良好。 结果表明, 漫透射和漫反射检测方式下, 糖度的最佳预测相关系数(Rp)及预测均方根误差(RMSEP)分别为0. 886, 0.727和0.820, 1.003, 预处理方法分别是多元散射校正、 平滑窗口宽度为3的S-G卷积平滑。 此外, 漫透射建立的硬度SPA-PLS模型, 选用15个光谱变量, 得到的Rp和RMSEP为0.798和0.976; 而漫反射建立的UVE-PLS模型, 选用113个光谱变量, 得到的Rp和RMSEP为0.841和0.829。 可以看出, 漫透射方式预测水蜜桃贮藏期间的糖度更佳, 而漫反射预测硬度更佳。 利用可见/近红外光谱所建立的糖度和硬度预测模型, 能够可靠地预测水蜜桃贮藏期内糖度和硬度的变化, 对指导采摘、 售卖时间和减少腐烂具有一定的参考价值。
可见/近红外光谱 水蜜桃贮藏 糖度和硬度 偏最小二乘回归 Visible/Near infrared spectroscopy Storage of peach Soluble solid content and firmness Partial least squares regression 
光谱学与光谱分析
2021, 41(1): 243
作者单位
摘要
中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
老挝水洞桃花石因与寿山石中的著名品种高山桃花石外观质地相似而受到关注。 运用宝石显微镜、 X射线粉晶衍射(XRD)、 红外光谱(FTIR)和拉曼光谱(LRM)等测试方法对老挝水洞桃花石样品的矿物组成、 红外光谱特征、 拉曼光谱特征、 杂质矿物成分以及颜色成因进行了研究, 并与高山桃花石的特征对比可知: 老挝水洞桃花石的主要矿物组成为结晶度中等的地开石与高岭石的过渡矿物或结晶度较高的地开石, 个别样品还含有石英。 老挝水洞桃花石在官能团区的三个红外特征吸收峰位于3 697, 3 653和3 621 cm-1处, 与羟基的伸缩振动有关, 其矿物成分为无序地开石-高岭石过渡矿物。 高山桃花石样品的红外光谱存在3 702, 3 653和3 621 cm-1三个特征吸收峰, 吸收峰的位置及强度表明其基质部分的矿物组成为有序地开石。 老挝水洞桃花石和高山桃花石样品在指纹区的红外光谱特征基本一致, 均显示1 106, 1 034和1 006 cm-1处Si—O和Al—O—H的伸缩振动吸收峰; 937和913 cm-1处Al—O—H弯曲振动吸收峰, 695和538 cm-1处Si—O—Al伸缩振动吸收峰; 471和430 cm-1处Si—O弯曲振动吸收峰。 老挝水洞桃花石样品基质部分的拉曼光谱中, 200~1 000 cm-1范围内202和273 cm-1处拉曼峰归属于O—H—O伸缩振动, 341 cm-1拉曼峰归属于Si—O振动, 439和468 cm-1处拉曼峰归属于Si—O弯曲振动, 754和800 cm-1处拉曼峰归属于Al—O—Si的弯曲振动, 921 cm-1处拉曼峰归属于OH弯曲振动。 3 550~3 750 cm-1范围内OH振动区通常显示与红外光谱高频区相似的三个谱峰。 老挝水洞桃花石和高山桃花石中“桃花”内含物均为赤铁矿, 特征拉曼峰位于225, 296, 411和1 318 cm-1处, 高山桃花石中还存在锐钛矿, 特征拉曼峰出现在145和639 cm-1处。 结合显微放大观察和电子探针成分分析的结果可知, 老挝水洞桃花石和高山桃花石都为杂质矿物致色, 内部密集的微晶赤铁矿包裹体使之呈现红色。
老挝水洞桃花石 高山桃花石 红外光谱 拉曼光谱 颜色成因 Laos Peach-blosson Stone Gaohan Peach-blossom Stone XRD XRD FTIR spectrum Ramam spectrum Color genesis 
光谱学与光谱分析
2020, 40(9): 2901
作者单位
摘要
中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
老挝水洞桃花石因与寿山石中的著名品种高山桃花石外观质地相似而受到关注。 运用宝石显微镜、 X射线粉晶衍射(XRD)、 红外光谱(FTIR)和拉曼光谱(LRM)等测试方法对老挝水洞桃花石样品的矿物组成、 红外光谱特征、 拉曼光谱特征、 杂质矿物成分以及颜色成因进行了研究, 并与高山桃花石的特征对比可知: 老挝水洞桃花石的主要矿物组成为结晶度中等的地开石与高岭石的过渡矿物或结晶度较高的地开石, 个别样品还含有石英。 老挝水洞桃花石在官能团区的三个红外特征吸收峰位于3 697, 3 653和3 621 cm-1处, 与羟基的伸缩振动有关, 其矿物成分为无序地开石-高岭石过渡矿物。 高山桃花石样品的红外光谱存在3 702, 3 653和3 621 cm-1三个特征吸收峰, 吸收峰的位置及强度表明其基质部分的矿物组成为有序地开石。 老挝水洞桃花石和高山桃花石样品在指纹区的红外光谱特征基本一致, 均显示1 106, 1 034和1 006 cm-1处Si—O和Al—O—H的伸缩振动吸收峰; 937和913 cm-1处Al—O—H弯曲振动吸收峰, 695和538 cm-1处Si—O—Al伸缩振动吸收峰; 471和430 cm-1处Si—O弯曲振动吸收峰。 老挝水洞桃花石样品基质部分的拉曼光谱中, 200~1 000 cm-1范围内202和273 cm-1处拉曼峰归属于O—H—O伸缩振动, 341 cm-1拉曼峰归属于Si—O振动, 439和468 cm-1处拉曼峰归属于Si—O弯曲振动, 754和800 cm-1处拉曼峰归属于Al—O—Si的弯曲振动, 921 cm-1处拉曼峰归属于OH弯曲振动。 3 550~3 750 cm-1范围内OH振动区通常显示与红外光谱高频区相似的三个谱峰。 老挝水洞桃花石和高山桃花石中“桃花”内含物均为赤铁矿, 特征拉曼峰位于225, 296, 411和1 318 cm-1处, 高山桃花石中还存在锐钛矿, 特征拉曼峰出现在145和639 cm-1处。 结合显微放大观察和电子探针成分分析的结果可知, 老挝水洞桃花石和高山桃花石都为杂质矿物致色, 内部密集的微晶赤铁矿包裹体使之呈现红色。
老挝水洞桃花石 高山桃花石 红外光谱 拉曼光谱 颜色成因 Laos Peach-blossom Stone Gaoshan Peach-blossom Stone XRD XRD FTIR spectrum Raman spectrum Color genesis 
光谱学与光谱分析
2020, 40(9): 2901
作者单位
摘要
1 暨南大学理工学院物理学系, 广东 广州 510632
2 广东交通职业技术学院电子工程系, 广东 广州 510650
3 暨南大学预科部, 广东 广州 510610
4 暨南大学生命科学技术学院生物工程学系, 广东 广州 510632
5 暨南大学理工学院光电工程系, 广东 广州 510632
利用自组装的数字全息表面等离子体共振成像技术,分别检测了两种具有不同分子质量的桃胶多糖(PGP-1与PGP-2)与半乳糖凝集素-3的相互作用。制备了表面等离子体共振成像生物芯片,同时检测了具有不同浓度的桃胶多糖样品与半乳糖凝集素-3的结合过程,制作了标准曲线,并计算了相互作用的结合平衡常数。结果表明,两种具有不同分子质量的桃胶多糖可以直接结合半乳糖凝集素-3,其中PGP-1的结合平衡常数为8.36×10 5 M -,PGP-2的结合平衡常数为1.24×10 5 M -。结合曲线符合生物分子相互作用的规律,证明了该方法在多通量生物检测中的可行性。该方法实验装置简单、易操作、无需标记、成本低,在高通量分析技术中具有一定的应用前景。
表面光学 表面等离子体共振成像 数字全息 桃胶多糖 半乳糖凝集素-3 分子间相互作用 高通量 
激光与光电子学进展
2019, 56(9): 092402
作者单位
摘要
中国农业大学食品科学与营养工程学院, 北京 100083
为了提升便携式近红外仪器中单一水果模型应用的广泛性, 创新性的将不同仪器间模型传递的思想应用在不同种类水果间可溶性固形物(soluble solid content, SSC)的模型传递。 基于苹果、 梨、 桃三种水果在SSC含量范围、 果型大小以及果皮厚度等的相近物理化学特性, 提出利用简单的斜率/截距(Slope/Bias)算法对苹果SSC的偏最小二乘(partial least square, PLS)模型进行传递, 仅用少量的梨和桃样品即可将苹果SSC模型应用于其SSC值的预测, 更快捷方便且节约成本。 对于梨样品, 用35个标准样品, 预测集均方根误差(root mean square error of prediction, RMSEP)值由直接预测的1.009 °Brix降为0.565 °Brix; 对于桃样品, 用40个标准样品, RMSEP由直接预测的1.726 °Brix降为0.677 °Brix。 为了验证该模型传递方法的可行性, 通过斜率/截距算法, 采用梨和桃模型对其他两种水果的SSC进行预测, 其中利用建立的梨SSC模型, 经斜率/截距算法模型传递后, 对于苹果样品, 用30个标准样品, RMSEP值达到0.597 °Brix, 对于桃样品, 用40个标准样品, RMSEP值达到0.689 °Brix; 利用建立的桃SSC模型, 经斜率/截距算法模型传递后, 对于苹果样品, 用35个标准样品, RMSEP值达到0.654 °Brix, 对于梨样品, 用30个标准样品, RMSEP值达到0.439 °Brix。 研究结果表明: 斜率/截距(Slope/Bias)方法可用于苹果、 梨、 桃等相近种类水果间的模型传递, 为近红外光谱仪在相似种类物质间的预测提供了新思路。
近红外光谱 模型传递 Slope/Bias算法 苹果   NIR spectroscopy Model transfer Slope/Bias algorithm Apple Pear Peach 
光谱学与光谱分析
2017, 37(1): 227
作者单位
摘要
西北农林科技大学 机械与电子工程学院, 陕西 杨凌 712100
为无损检测桃的内部品质, 提出了结合高光谱成像技术和人工神经网络无损检测桃硬度的方法。采集了摘后贮藏了12 d的140个桃在900~1 700 nm的高光谱图像, 以每个桃高光谱图像中40 pixel×40 pixel的感兴趣区域的平均光谱作为桃的原始反射光谱; 利用Savitzky-Golay平滑和标准正态变量变换对光谱进行预处理; 基于x-y共生距离算法划分样本, 得到校正集样本105个和预测集样本35个。利用连续投影算法、无信息变量消除法和正自适应加权算法从全光谱的216个波长中分别提取了12个、103个和22个特征波长; 分别建立了基于全光谱和提取的特征波长预测桃硬度的支持向量机模型和BP网络模型。结果表明, 基于全光谱建立的BP网络模型具有最好的预测性能, 其预测相关系数为0.856, 预测均方根误差为0.931。本研究为基于桃内部品质的工业化分级提供了基础。
高光谱成像  硬度 无损检测 BP网络 支持矢量向量机 hyperspectral imaging peach firmness nondestructive detection BP network support vector machine 
光学 精密工程
2015, 23(6): 1530

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!