Author Affiliations
Abstract
1 Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
2 Key Laboratory of Optical Information Science and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071, China
3 School of Physical Science and Technology, Soochow University, Suzhou 215006, China
Depressed cladding waveguides are fabricated in Pr:LiYF4 (YLF) crystal by femtosecond laser inscription following a helical scheme. With the optimized parameters, the propagation loss of the waveguide is around 0.12 dB/cm for multimode guiding. Under optical pumping with InGaN laser diodes at 444 nm, efficient waveguide lasers in the orange around 604 nm (π-polarized) are achieved with minimum lasing threshold of 119.8 mW, maximum slope efficiency of 16.6%, and maximum output power of 120.6 mW. Benefiting from their optimized performances, the waveguides produced in this work are promising for applications as compact orange laser sources.
femtosecond laser helical inscription Pr:YLF crystal optical waveguide laser 
Chinese Optics Letters
2022, 20(12): 122201
Author Affiliations
Abstract
1 Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
2 Shenzhen Research Institute, Xiamen University, Shenzhen 518057, China
3 Analysis and Test Center of Sichuan Province, Chengdu 610000, China
We report on diode-pumped continuous-wave Pr-doped yttrium lithium fluoride (Pr:YLF) laser and its frequency doubling to 320 nm. The maximum output power of the 640 nm fundamental wave reached 3.44 W with a slope efficiency of about 48.3%. Using a type-I phase-matched lithium triborate (LBO) crystal as a frequency doubler, we have achieved 320 nm ultraviolet radiation with a maximum output power of 1.01 W, which is the highest power ever reported under diode pumping, to the best of our knowledge.
Pr:YLF crystal frequency doubling ultraviolet continuous wave 
Chinese Optics Letters
2021, 19(9): 091406
作者单位
摘要
1 长春新产业光电技术有限公司,吉林 长春 130012
2 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
利用不同波长的蓝光激光二极管,采用不同方式抽运掺镨氟化钇锂(Pr:YLF)晶体,利用I类相位匹配的偏硼酸钡(BBO)为倍频晶体,腔内倍频产生中心波长为261.37 nm连续紫外激光器。采用V型折叠腔结构,利用两支不同波长的蓝光激光二极管(444 nm和469 nm)单独泵浦晶体,经过优化,将两支蓝光激光二极管合光后作为抽运源,增大泵浦功率的同时,保留了Pr:YLF晶体对其高的偏振吸收效率。Pr:YLF晶体的长度为5 mm,掺杂浓度为0.5%,在抽运光功率为2 800 mW时获得了最大输出功率245 mW的连续紫外261.37 nm激光器,光光转换效率约为8.75%。
激光器 紫外激光器 掺镨氟化钇锂晶体 双波长泵浦 laser ultraviolet laser Pr:YLF crystal two wavelength pump 
红外与激光工程
2020, 49(S1): 20200090
作者单位
摘要
1 长春新产业光电技术有限公司,吉林 长春 130012
2 长春新产业光电技术有限公司,吉林 长春 130012;中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
设计了一种采用不同波长的蓝光二极管合光作为抽运源并采用双端抽运的方式抽运Pr:YLF晶体320 nm紫外激光器。该激光器结构采用V型折叠腔结构,使用波长分别为444 nm和469 nm、抽运功率分别为3 W和1.4 W的蓝光激光二极管作为抽运源,对12 mm长、0.3%掺杂浓度的Pr:YLF晶体进行抽运,并且使用三硼酸锂晶体作为倍频晶体来实现倍频,匹配方式为I类相位匹配。通过对谐振腔参数进行优化,当5700 mW的抽运功率注入晶体时,输出了1005 mW最大输出功率的320 nm紫外连续激光,光光转换效率约为17.6%。
320 nm紫外激光器 双端抽运 不同波长 掺镨氟化钇锂晶体 320 nm UV laser double-end-pumped different wavelength Pr:YLF crystal 
红外与激光工程
2020, 49(12): 20201070
作者单位
摘要
华侨大学 信息科学与工程学院 福建省光传输与变换重点实验室, 福建 厦门 361021
从理论和实验上研究了从激光器直接输出高阶拉盖尔-高斯(LG)光束和高阶厄密-高斯(HG)光束。首先从理论上研究了高阶LG光束和高阶HG光束的光强分布特性, 并进行数值仿真。在实验研究中, 利用445 nm的蓝光半导体激光器端面泵浦Pr:YLF晶体, 在一定的条件下, 能从平凹腔直接输出640 nm波长高阶LG光束和高阶HG光束。实验结果表明: 从激光腔内输出的高阶LG光束和高阶HG光束与理论仿真基本一致。文中所报道的获得高阶模的实验装置简单, 对产生高阶光束及其应用具有较重要价值。
高阶拉盖尔-高斯光束 高阶厄密-高斯光束 蓝光半导体激光器 平凹腔 Pr:YLF晶体 higher-order Laguerre-Gaussian (LG) beams higher-order Hermite-Gaussian (HG) beams blue semiconductor laser plano-concave cavity Pr:YLF crystal 
红外与激光工程
2018, 47(6): 0606002
闫宇 1,*刘哲 1,2徐斌 1王凤娟 1[ ... ]R Moncorgé 2
作者单位
摘要
1 厦门大学电子工程系, 福建 厦门 361005
2 法国卡昂大学材料与光电离子研究中心, 卡昂 法国 14050
报道了蓝光半导体激光抽运的掺镨氟化钇锂(Pr:YLF)橙光607 nm固体激光器。光抽运半导体激光器(OPSL)与激光二极管(LD)相比具有光束质量好、输出功率高、吸收效率高等优点,因此采用OPSL作为抽运源有助于提高Pr:YLF激光器性能。分别测量了Pr:YLF在橙光波段内常温(300 K)和低温(12 K)时的偏振发射光谱,表明该晶体的橙光3P0→3H6跃迁主要包含6条发射谱线。采用最高输出功率为1.9 W,中心波长为479.2 nm的OPSL作为抽运源,以及长度为5 mm、掺杂原子数分数为0.5%的Pr:YLF晶体作为增益介质,在平凹腔结构下获得的橙光607 nm最大输连续输出功率为524 mW,对应斜率效率为39.1%。
激光器 橙光激光器 掺镨氟化钇锂晶体 光抽运半导体激光器 
中国激光
2013, 40(s1): s102004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!