Author Affiliations
Abstract
1 International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
2 Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Shenzhen University, Shenzhen 518060, China
3 College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
A power-scaled laser operation of Pr:YLiF4 (YLF) crystal at 720.9 nm pumped by a 443.6 nm laser diode (LD) module was demonstrated. The 20 W module was used to pump the Pr:YLF crystal, and a maximum output power of 3.03 W with slope efficiency of 30.04% was obtained. In addition, a 5 W blue LD was also used to pump the Pr:YLF laser, and a maximum output power of 0.72 W was obtained at room temperature. The output power was limited by the wavelength mismatch between the single-emitter LD and the absorption peak of the crystal.
rare earth and transition metal solid-state lasers visible lasers diode-pumped lasers 
Chinese Optics Letters
2020, 18(1): 011405
Author Affiliations
Abstract
1 Laboratory for Optical Systems, Department of Microsystems Engineering-IMTEK, University of Freiburg, 79110 Freiburg, Germany
2 School of Physics, State Key Laboratory of Crystal Materials, Key Laboratory of Particle Physics and Particle Irradiation (Ministry of Education), Shandong University, Jinan 250100, China
Over the last years, there has been tremendous progress with compact pulsed lasers based on various solid-state gain media, such as crystals and glasses doped with laser-active ions. With the integration of increasingly diverse saturable absorber materials, these small sources are capable of delivering stable pulses with durations as short as femtoseconds and repetition rates exceeding 10 GHz. These promising sources are known as solid-state waveguide lasers, which have become synonymous with miniaturization, integration, and functionality. This article overviews the progress in the development of passively Q-switched and mode-locked solid-state waveguide lasers employing diverse saturable absorbers. The most commonly used laser configurations, state-of-the-art waveguide fabrication techniques, and experimental demonstrations of pulsed waveguide lasers are summarized and reviewed. Selected well-noted topics, which may shape the future directions in this field, are also presented.
230.7370 Waveguides 140.5680 Rare earth and transition metal solid-state lasers 140.3540 Lasers, Q-switched 
Chinese Optics Letters
2019, 17(1): 012302
Author Affiliations
Abstract
1 Advanced Medical Device Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Korea
2 Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
3 BioMed Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea
We demonstrate a femtosecond Cr:YAG laser mode-locked by a carbon nanotube saturable absorber mirror (CNT-SAM) at a repetition rate of 550 MHz. By employing the CNT-SAM, which exhibits a modulation depth of 0.51% and a saturation fluence of 28 μJ/cm2 at 1.5 μm, we achieved a compact bulk Cr:YAG laser with self-starting mode-locked operation near 1.5 μm, delivering an average output power of up to 147 mW and a pulse duration of 110 fs. To our knowledge, this system provides the highest repetition rate among reported CNT-SAM mode-locked Cr:YAG lasers and the shortest pulse duration among saturable absorber mode-locked Cr:YAG lasers with repetition rates above 500 MHz.
140.4050 Mode-locked lasers 140.5680 Rare earth and transition metal solid-state lasers 140.7090 Ultrafast lasers 
Chinese Optics Letters
2018, 16(6): 061404
Author Affiliations
Abstract
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
A high pulse repetition frequency (PRF), high energy Ho:YAG laser directly pumped by a Tm-doped fiber laser and its application to a mid-infrared ZnGeP2 (ZGP) optical parametric oscillator (OPO) is demonstrated. The maximum polarized 2.09 μm laser pulse energy is 13.46 mJ at a PRF of 1 kHz. The corresponding peak power reaches 504 kW. In a double-resonant ZGP-OPO, a maximum mid-infrared laser pulse energy of 1.25 mJ, corresponding to a peak power of 79 kW, is accomplished at a PRF of 3 kHz. The nonlinear conversion efficiency reaches 41.7%. The nonlinear slope efficiency reaches 53.3%.
140.3070 Infrared and far-infrared lasers 140.3540 Lasers, Q-switched 140.4480 Optical amplifiers 140.5680 Rare earth and transition metal solid-state lasers 
Chinese Optics Letters
2017, 15(9): 091402
Author Affiliations
Abstract
1 Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Institute of North Optics and Electronic, Beijing 100015, China
We present a hybrid adaptive optics system for a kW-class solid-state slab master oscillator power amplifier laser that consists of both a low-order aberration corrector and a 59-actuator deformable mirror. In this system large defocus and astigmatism of the beam are first corrected by the low-order aberration corrector and then the remaining components are compensated by the deformable mirror. With this sequential procedure it is practical to correct the phase distortions of the beam (peak to valley up to 100 μm) and the beam quality β is successfully improved to 1.9 at full power.
010.1080 Active or adoptive optics 140.5680 Rare earth and transition metal solid-state lasers 090.1000 Aberration compensation 
Chinese Optics Letters
2016, 14(9): 091402
Author Affiliations
Abstract
Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Center for Photonics and Electronics, Tsinghua University, Beijing 100084, China
A high-power, high-energy Ho:YAG oscillator resonantly pumped by a Tm-doped fiber laser is presented. A maximum continuous output power of 38 W with a slope efficiency of 51.9% is achieved at the wavelength of 2.09 μm, and M21.48. In the Q-switching regime, the maximum pulse energy of 12.8 mJ, corresponding to a 514.5 kW peak power, is obtained at the pulse repetition frequency of 1 kHz. Furthermore, the thermal lens effect of the system is studied theoretically, and the radius of the transverse electromagnetic (TEM00) mode of the laser crystal under different pump powers is given.
140.3540 Lasers, Q-switched 140.3580 Lasers, solid-state 140.5680 Rare earth and transition metal solid-state lasers 
Chinese Optics Letters
2015, 13(12): 121402
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Key laboratory of Micro and Nano Photonic Structures (Ministry of Education
Self-pulsation effects of cladding-pumped Erbium-Ytterbium co-doped fiber laser (EYDFL) at around the lasing threshold are investigated. It is demonstrated that laser output of the Erbium-Ytterbium co-doped fiber under the bi-directional pumping regime is more stable than that under the unidirectional pumping one due to the relatively uniform pumping of the fiber. Mechanisms of self-pulsations in the laser system are discussed and possible techniques to avoid self-pulsing and stabilize the laser are proposed.
060.3510 Lasers, fiber 140.3510 Lasers, fiber 140.5680 Rare earth and transition metal solid-state lasers 
Collection Of theses on high power laser and plasma physics
2013, 11(1): S20605
Author Affiliations
Abstract
This letter demonstrates an efficient high-power high-brightness 2-\mu m continuous-wave (CW) laser with double-end, diffusion-bonded Tm, Ho:YVO4 crystal cooled with liquid N2. The reduction in thermal stress in the composite Tm, Ho:YVO4 rod enabled the laser to achieve a laser output power of 23.4 W at 2.05 \mu m, which is 1.37 times higher than that of the non-composite Tm, Ho:YVO4 rod. The corresponding slope efficiency is 37.3% and the optical–optical conversion efficiency is 35.4%. The beam quality M2 factor is about 1.85 at 20 W output level with circularly symmetric beam spot.
140.3480 Lasers, diode-pumped 140.3580 Lasers, solid-state 140.5680 Rare earth and transition metal solid-state lasers 
Chinese Optics Letters
2013, 11(9): 091404
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Key laboratory of Micro and Nano Photonic Structures (Ministry of Education
Self-pulsation effects of cladding-pumped Erbium-Ytterbium co-doped fiber laser (EYDFL) at around the lasing threshold are investigated. It is demonstrated that laser output of the Erbium-Ytterbium co-doped fiber under the bi-directional pumping regime is more stable than that under the unidirectional pumping one due to the relatively uniform pumping of the fiber. Mechanisms of self-pulsations in the laser system are discussed and possible techniques to avoid self-pulsing and stabilize the laser are proposed.
060.3510 Lasers, fiber 140.3510 Lasers, fiber 140.5680 Rare earth and transition metal solid-state lasers 
Chinese Optics Letters
2013, 11(s2): S20605
Author Affiliations
Abstract
We report the demonstration of passively continuous-wave mode-locking (CWML) of diode-pumped Tm,Ho:YVO4 laser using an InGaAs/GaAs multiple quantum-well (MQW) structure semiconductor as the saturable absorber. Stable mode-locking pulses at the central wavelength of 2 041 nm are obtained. The maximum output power is 151 mW. The pulse duration is 4.7 ps at the repetition rate of 64.3 MHz.
140.3070 Infrared and far-infrared lasers 140.4050 Mode-locked lasers 140.5680 Rare earth and transition metal solid-state lasers 
Chinese Optics Letters
2012, 10(7): 071402

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!