Author Affiliations
Abstract
1 Instrument Science and Technology, Harbin Institute of Technology, Harbin 150001, China
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
The laser-induced damage detection images used in high-power laser facilities have a dark background, few textures with sparse and small-sized damage sites, and slight degradation caused by slight defocus and optical diffraction, which make the image superresolution (SR) reconstruction challenging. We propose a non-blind SR reconstruction method by using an exquisite mixing of high-, intermediate-, and low-frequency information at each stage of pixel reconstruction based on UNet. We simplify the channel attention mechanism and activation function to focus on the useful channels and keep the global information in the features. We pay more attention on the damage area in the loss function of our end-to-end deep neural network. For constructing a high-low resolution image pairs data set, we precisely measure the point spread function (PSF) of a low-resolution imaging system by using a Bernoulli calibration pattern; the influence of different distance and lateral position on PSFs is also considered. A high-resolution camera is used to acquire the ground-truth images, which is used to create a low-resolution image pairs data set by convolving with the measured PSFs. Trained on the data set, our network has achieved better results, which proves the effectiveness of our method.
laser-induced damage image superresolution image segmentation 
Chinese Optics Letters
2024, 22(4): 041701
周瑶 1,2费鹏 1,2,*
作者单位
摘要
1 华中科技大学光学与电子信息学院,湖北 武汉 430074
2 高端生物医学成像省部共建重大科技基础设施,湖北 武汉 430074
显微镜的光学孔径和测量带宽的有限性限制了生物应用中的信息获取,包括在观测生物体系的精细亚细胞结构动力学过程、活体超快瞬态生物学过程,以及介观离体组织的高效三维成像等,这一问题成为多领域生物医学研究的制约因素。传统荧光显微镜的局限性促使研究人员着手探索新型荧光显微成像原理和方法。研究者们引入了人工智能手段,以提高荧光显微成像的速度和精度,从而增加信息获取的通量。本文以细胞生物学、发育生物学和肿瘤医学为视角,详细分析了在这些领域中通量限制带来的挑战。结合深度学习,突破了传统荧光显微成像的通量限制问题,为物理光学和图像处理领域的进一步发展提供了契机。这一创新助力于生物医学研究的推进,使科学家能够更全面、深入地理解生命和健康领域的复杂现象。因此,本研究不仅对生物医学领域具有重要意义,而且为未来的研究和应用提供了崭新的可能性。
荧光显微 深度学习 超分辨成像 超快成像 高通量成像 
激光与光电子学进展
2024, 61(16): 1600001
Author Affiliations
Abstract
1 Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
2 Key Laboratory of Opto-electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
3 College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
4 Department of Bioengineering and COMSET, Clemson University, Clemson SC 29634, US
Wide-field linear structured illumination microscopy (LSIM) extends resolution beyond the diffraction limit by moving unresolvable high-frequency information into the passband of the microscopy in the form of moiré fringes. However, due to the diffraction limit, the spatial frequency of the structured illumination pattern cannot be larger than the microscopy cutoff frequency, which results in a twofold resolution improvement over wide-field microscopes. This Letter presents a novel approach in point-scanning LSIM, aimed at achieving higher-resolution improvement by combining stimulated emission depletion (STED) with point-scanning structured illumination microscopy (psSIM) (STED-psSIM). The according structured illumination pattern whose frequency exceeds the microscopy cutoff frequency is produced by scanning the focus of the sinusoidally modulated excitation beam of STED microscopy. The experimental results showed a 1.58-fold resolution improvement over conventional STED microscopy with the same depletion laser power.
stimulated emission depletion structured illumination microscopy superresolution microscopy 
Chinese Optics Letters
2024, 22(3): 031701
作者单位
摘要
1 江苏科技大学理学院,江苏 镇江 212100
2 山东大学信息科学与工程学院,山东 青岛 266237
叠层成像的成像分辨率会受到数值孔径和电荷耦合器件(CCD)像素尺寸的限制。CCD靶面有限则数值孔径有限,采集大光斑图像时,易丢失CCD靶面边缘的部分高频信息。此外,像素尺寸较大会导致成像时采样率不足,也会丢失部分细节高频信息。提出了一种高分辨率叠层成像方法,可同时处理数值孔径和CCD像素尺寸的分辨率限制问题。首先,利用外推法补充因数值孔径有限丢失的高阶衍射信息,之后将外推法重建的图像代入基于多权重损失函数的生成对抗网络中,即可快速解决像素尺寸受限问题,提高成像分辨率。多权重损失函数为均方误差、特征图误差和对抗误差的加权和。通过设置合理的权重,可以实现像素和视觉层面的均衡处理。仿真及实验结果表明,该方法在提高叠层成像系统分辨率上具有显著效果,且运算效率高。
超分辨率 叠层成像 外推法 生成对抗网络 多权重损失函数 
激光与光电子学进展
2024, 61(8): 0811003
Author Affiliations
Abstract
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
The ongoing quest for higher data storage density has led to a plethora of innovations in the field of optical data storage. This review paper provides a comprehensive overview of recent advancements in next-generation optical data storage, offering insights into various technological roadmaps. We pay particular attention to multidimensional and superresolution approaches, each of which uniquely addresses the challenge of dense storage. The multidimensional approach exploits multiple parameters of light, allowing for the storage of multiple bits of information within a single voxel while still adhering to diffraction limitation. Alternatively, superresolution approaches leverage the photoexcitation and photoinhibition properties of materials to create diffraction-unlimited data voxels. We conclude by summarizing the immense opportunities these approaches present, while also outlining the formidable challenges they face in the transition to industrial applications.
optical data storage multidimensional data storage nanogratings superresolution data storage 
Chinese Optics Letters
2023, 21(12): 120051
作者单位
摘要
1 哈尔滨理工大学 测控技术与通信工程学院 大珩协同创新中心,黑龙江 哈尔滨 150080
2 南京大学 固体微结构物理国家重点实验室,江苏 南京 210093
3 河北工业大学 先进激光技术研究中心,天津 300401
光学干涉仪是现代精密测量技术的核心支撑,但其分辨率受到光源波长的限制,无法通过无限减小波长提高分辨率,而“相位超分辨”即是指设法解决光源波长限制的技术手段。目前“相位超分辨”研究主要通过调控 $ N $光子纠缠态的途径实现,但是由于 $ N $光子纠缠态制备与调控的极高难度和符合计数的极低效率使得该途径无法用于实际测量。针对这一瓶颈,笔者联合团队利用轨道角动量(OAM)相干态在光学超晶格中的级**量上转换过程高效构造、提取多光子复振幅信号。实现了 $ N=12 $倍的相位超分辨干涉信号的实时测量,为发展可实际应用的高倍率相位超分辨干涉测量技术提供了一条全新的物理途径。
相位超分辨 非线性光学 光场调控 phase superresolution nonlinear optics light field control 
红外与激光工程
2023, 52(8): 20230398
Author Affiliations
Abstract
1 Fudan University, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Academy for Engineering and Technology, Department of Physics, State Key Laboratory of Surface Physics, Shanghai, China
2 Southern University of Science and Technology, Department of Biomedical Engineering, Shenzhen, China
Stimulated Raman scattering (SRS) microscopy has shown superior chemical resolution due to the much narrower vibrational spectral bandwidth than its fluorescence counterpart. However, breaking the diffraction-limited spatial resolution of SRS imaging is much more challenging because of the intrinsically weak scattering cross section and inert/stable nature of molecular bond vibrations. We report superresolution SRS (SR-SRS) nanoscopy based on reversible-switchable vibrational photochromic probes integrated with point spread function engineering strategy. By introducing a Gaussian-shaped ultraviolet excitation beam and a donut-shaped visible depletion beam in addition to the pump and Stokes beams, SR-SRS could reach sub-100 nm resolution on photoswitchable nanoparticles (NPs). Furthermore, NP-treated live cell imaging was demonstrated with resolution improvement by a factor of ∼4. Our proof-of-principle work provides the potential for SR vibrational imaging to assist research on complex biological systems.
stimulated Raman scattering superresolution microscopy vibrational imaging photoswitching 
Advanced Photonics
2023, 5(6): 066001
Author Affiliations
Abstract
1 Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
2 Bauman Moscow State Technical University, Moscow 105005, Russia
3 Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
4 Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka 142432, Russia
5 Research Institute of Human Morphology, Moscow 117418, Russia
6 School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300000, China
7 College of Materials Science and Engineering, Sichuan University, Chengdu 610000, China
8 Science Medical Center, Saratov State University, Saratov 410012, Russia
9 Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov 410028, Russia
Terahertz (THz) technology offers novel opportunities in biology and medicine, thanks to the unique features of THz-wave interactions with tissues and cells. Among them, we particularly notice strong sensitivity of THz waves to the tissue water, as a medium for biochemical reactions and a main endogenous marker for THz spectroscopy and imaging. Tissues of the brain have an exceptionally high content of water. This factor, along with the features of the structural organization and biochemistry of neuronal and glial tissues, makes the brain an exciting subject to study in the THz range. In this paper, progress and prospects of THz technology in neurodiagnostics are overviewed, including diagnosis of neurodegenerative disease, myelin deficit, tumors of the central nervous system (with an emphasis on brain gliomas), and traumatic brain injuries. Fundamental and applied challenges in study of the THz-wave – brain tissue interactions and development of the THz biomedical tools and systems for neurodiagnostics are discussed.
THz technology THz spectroscopy and imaging superresolution imaging biophotonics brain neurodiagnosis tumor glioma neurodegenerative diseases brain injury light scattering 
Opto-Electronic Advances
2023, 6(5): 220071
Yu He 1†Yunhua Yao 1Yilin He 1Zhengqi Huang 1[ ... ]Shian Zhang 1,5,6,*
Author Affiliations
Abstract
1 East China Normal University, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
2 Shenzhen University, Institute of Microscale Optoelectronics, Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen, China
3 Peking University, Biomedical Engineering Department, Beijing, China
4 Peking University, School of Physics, State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Beijing, China
5 East China Normal University, Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, Shanghai, China
6 Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
Structured illumination microscopy (SIM) has been widely applied in the superresolution imaging of subcellular dynamics in live cells. Higher spatial resolution is expected for the observation of finer structures. However, further increasing spatial resolution in SIM under the condition of strong background and noise levels remains challenging. Here, we report a method to achieve deep resolution enhancement of SIM by combining an untrained neural network with an alternating direction method of multipliers (ADMM) framework, i.e., ADMM-DRE-SIM. By exploiting the implicit image priors in the neural network and the Hessian prior in the ADMM framework associated with the optical transfer model of SIM, ADMM-DRE-SIM can further realize the spatial frequency extension without the requirement of training datasets. Moreover, an image degradation model containing the convolution with equivalent point spread function of SIM and additional background map is utilized to suppress the strong background while keeping the structure fidelity. Experimental results by imaging tubulins and actins show that ADMM-DRE-SIM can obtain the resolution enhancement by a factor of ∼1.6 compared to conventional SIM, evidencing the promising applications of ADMM-DRE-SIM in superresolution biomedical imaging.
structured illumination microscopy superresolution imaging resolution enhancement untrained neural network 
Advanced Photonics Nexus
2023, 2(4): 046005
Author Affiliations
Abstract
1 Peking University, Institute of Molecular Medicine, College of Future Technology, Center for Life Sciences, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
2 Peking University, School of Software and Microelectronics, Beijing, China
3 Chongqing University of Posts and Telecommunications, College of Computer Science and Technology, Chongqing Key Laboratory of Image Cognition, Chongqing, China
4 Peking University, Biomedical Engineering Department, Beijing, China
5 Peking University, International Cancer Institute, Beijing, China
6 PKU-IDG/McGovern Institute for Brain Research, Beijing, China
7 Beijing Academy of Artificial Intelligence, Beijing, China
8 National Biomedical Imaging Center, Beijing, China

Structured illumination microscopy (SIM) has been widely used in live-cell superresolution (SR) imaging. However, conventional physical model-based SIM SR reconstruction algorithms are prone to artifacts in handling raw images with low signal-to-noise ratios (SNRs). Deep-learning (DL)-based methods can address this challenge but may lead to degradation and hallucinations. By combining the physical inversion model with a total deep variation (TDV) regularization, we propose a hybrid restoration method (TDV-SIM) that outperforms conventional or DL methods in suppressing artifacts and hallucinations while maintaining resolutions. We demonstrate the performance superiority of TDV-SIM in restoring actin filaments, endoplasmic reticulum, and mitochondrial cristae from extremely low SNR raw images. Thus TDV-SIM represents the ideal method for prolonged live-cell SR imaging with minimal exposure and photodamage. Overall, TDV-SIM proves the power of integrating model-based reconstruction methods with DL ones, possibly leading to the rapid exploration of similar strategies in high-fidelity reconstructions of other microscopy methods.

structured illumination microscopy superresolution reconstruction deep learning 
Advanced Photonics Nexus
2023, 2(1): 016012

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!