作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为满足大口径离轴三反空间望远镜在轨成像质量需求, 设计了一种基于6-PSS并联机构的次镜调整机构, 并针对其精度进行了分析与实测。首先, 分析了次镜调整机构的组成和光学系统对它的精度需求。随后, 以逆运动学分析为基础建立了次镜调整机构的误差模型, 并对结构参数、动平台位置、动平台姿态对整机精度的影响进行了理论分析, 根据分析结果结合实际空间包络及重量等约束确定结构参数, 并采用Monte Carlo模型分析了该结构参数下的次镜调整机构的随机误差和系统误差。最后, 搭建了精度测试系统, 对次镜六维调整机构的主要技术指标进行了实测。测试结果显示, 次镜六维调整机构的位移分辨率优于0.1 μm, 角度分辨率优于0.5″, 双向重复定位精度达到亚微米/亚角秒量级(±0.4 μm/±0.3″), 其绝对定位精度可以达到微米/角秒量级, 满足大型空间望远镜在轨成像要求。
大型空间望远镜 次镜调整机构 误差模型 精度分析 精度测试 large space telescope secondary mirror adjusting mechanism error model accuracy analysis accuracy testing 
光学 精密工程
2019, 27(11): 2374
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京100049
对双光束波长合束精度进行了研究。用镀有特制光学薄膜的滤光片对波长为532和515 nm的两束激光进行合束,并对合束精度进行检测。基于此系统,建立了对应理论模型,并对合束及检测的误差来源和大小进行全面分析。两光束指向稳定性均为50 μrad时,合束精度理论值为14.69″,指向稳定性所占比例为99.26%,系统对质心定位等不稳定因素(误差变化<3倍)抗性极好,精度变化<2.4‰; 指向稳定性提高到23.51 μrad时,合束精度理论值为7.09″,指向稳定性所占比例为96.77%,系统仍有较高抗干扰能力,精度变化<1%。分析表明,影响近场小功率合束精度的因素有激光指向稳定性、机械调节和质心定位误差,其中激光指向稳定性是主要因素。通过调节各因素的比例,可对合束的抗干扰能力进行控制。
双光束合束 波长合束 精度检测 误差分析 double beam combination wavelength multiplexing accuracy testing error analysis 
中国光学
2014, 7(5): 801

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!