孙佰成 1郭杰 1,*许方宇 2,**范明国 3[ ... ]张雨辰 2
作者单位
摘要
1 云南师范大学 云南省光电信息技术重点实验室 云南 昆明 650500
2 中国科学院云南天文台 云南 昆明 650216
3 昆明物理研究所,云南 昆明 650223
基于天文红外探测器评价体系,利用改进的“光子转移曲线”测试方法,分别测试了液氮制冷和热电制冷的两款InGaAs近红外探测器的性能。NIRvana-LN光电子与输出数字量的转换因子为0.16ADU/e-,读出噪声实测值是83 e-,远高于标称值15 e-;NIRvana的高、低转换因子分别为1.25ADU/e-和0.097ADU/e-,读出噪声分别为105 e-和380 e-;NIRvana在高转换因子档下暗电流实测值是415 e-/s,大约是标称值的2倍。理论估算云南天文台两米环形望远镜在1.565 μm太阳磁场测量时的信号电子数约8800 e-,在实测暗电流4.06 e-/s,像元曝光时间20 ms,读出噪声83.59 e-条件下,NIRvana-LN探测器信噪比为70。
红外天文 InGaAs红外探测器 转换因子 读出噪声 暗电流 infrared astronomy InGaAs infrared detector conversion factor readout noise dark current 
红外与毫米波学报
2022, 41(6): 1002
作者单位
摘要
1 安徽师范大学物理与电子信息学院,安徽芜湖 241002
2 北京邮电大学电子工程学院,北京 100876
3 英国伦敦玛丽女王大学电子工程与计算机学院,英国伦敦
针对毫米波及太赫兹技术在遥感、天文探测以及成像等领域的应用,讨论了准光技术的基本原理、关键器件、系统构成及其技术优势; 探讨了准光技术国内外现状及未来的发展趋势。准光技术是基于高斯波束在自由空间中传播而进行系统设计与分析的一种技术。利用准光技术实现的毫米波及太赫兹系统具有高功率处理能力,具备多极化、低传输损耗以及紧凑性等优点。准光技术在未来的各个领域将会有更加广阔的应用前景。
毫米波 太赫兹 准光技术 高斯波束 波束波导 射电天文 遥感 成像探测 millimeter wave terahertz wave quasi-optical technology Gaussian beam beam waveguide radio astronomy remote sensing imaging and detection 
太赫兹科学与电子信息学报
2022, 20(7): 631
李晓龙 1,2蔡洪波 1,*黎华丽 1,**魏建彦 1,***
作者单位
摘要
1 中国科学院国家天文台空间天文与技术重点实验室,北京 100101
2 中国科学院大学,北京 100049
为了提高天文观测的效率,需要对夜间地基光学天文观测中薄云的识别和影响程度评估的算法进行研究。首先,分析了云对地基光学天文观测的影响和传统地基云图的算法后,选取大视场地基光学天文设备地基广角相机阵(GWAC)的图像进行研究。其次,通过GWAC图像的灰度分布等特性的对比分析,选取模糊C均值聚类(FCM)算法处理受薄云影响的GWAC图像。然后,应用FCM算法,通过重复多组实验,选定合适的聚类层次数、迭代次数和平滑因子等关键参数。最后,将FCM算法结果与传统天文学的恒星消光方法进行比较。设置平滑因子为1.5,聚类层次数为5,经过10次循环迭代计算后,FCM算法将夜晚的天空背景聚类成5个层次。层次分布结果与目测云层厚度分布相符,且与更精确的传统天文学恒星消光方法的结果也吻合。对于大视场地基光学天文图像中的薄云,FCM算法可以有效地识别并分析出其厚薄分布结构,即能对薄云的影响程度进行分级评估。此FCM算法有望结合更大视场的鱼眼镜头和CCD相机的监测设备,研发出一类自动监测和实时评估云层分布和影响程度的专用设备,提高地基光学天文观测的效率。
图像处理 地基光学天文 大视场 云监测 模糊C均值聚类 地基广角相机阵 
激光与光电子学进展
2022, 59(16): 1610010
作者单位
摘要
1 南京信息工程大学 电子与信息工程学院,江苏 南京 210044
2 中国科学院 紫金山天文台,江苏 南京 210034
3 南京信息工程大学 长望学院,江苏 南京 210044
针对太赫兹频段边带分离接收机的应用需求,综合考虑本振信号弱耦合度、射频信号高方向性及现阶段铣削工艺精确度等要求,研制了一款400~500 GHz频段-16 dB 本振信号波导耦合器。主要包括分支型定向耦合器的耦合度特性分析、-16 dB弱耦合度波导耦合器设计、基于数控机械加工(CNC)技术的器件制备与结果讨论。2件样品实测结果均表明:该耦合器在400~500 GHz频段(相对带宽为22.5%)获得本振信号耦合度在-16~-17 dB,射频信号方向性为-1.2 dB,隔离度优于-20 dB,所有端口回波损耗优于-15 dB。上述性能均与仿真结果保持高度一致,表明当前CNC技术能够满足该高频段波导耦合器制备的高精确度需求。
太赫兹 波导耦合器 耦合度 本振信号 射电天文 terahertz waveguide coupler coupling degree Local Oscillator signal radio astronomy 
太赫兹科学与电子信息学报
2021, 19(6): 978
作者单位
摘要
1 南京信息工程大学长望学院,江苏 南京 210044
2 南京信息工程大学电子与信息工程学院,江苏 南京 210044
在射电天文领域,为了实现更宽频带内多谱线同时观测任务,要求太赫兹超导相干接收机向更宽带方向发展。针对下一代太赫兹超宽带接收机的应用需求,提出了一种频段覆盖180~ 420 GHz(相对带宽达87%)的超宽带脊波导双工器设计,主要包括:180~300 GHz频段和320~420 GHz频段宽带脊波导滤波器设计与变换;超宽带太赫兹多级耦合型脊波导双工器优化设计。仿真结果表明该结构能够在180~300 GHz和320~420 GHz频段双工工作,回波损耗整体优于15 dB,通道间隔离度达20 dB以上。
太赫兹 脊波导 滤波器 双工器 超宽带 射电天文 terahertz ridge waveguide filter duplexer ultra-wideband radio astronomy 
太赫兹科学与电子信息学报
2021, 19(5): 804
李道京 1周凯 1,2郑浩 3高敬涵 1,2[ ... ]吴疆 1,2
作者单位
摘要
1 中国科学院空天信息创新研究院 微波成像技术国家级重点实验室,北京0090
2 中国科学院大学,北京100049
3 项目管理中心,北京100101
4 西安电子科技大学 物理与光电工程学院,西安710071
本文分析了红外干涉成像现状和难点,介绍了激光本振红外相干探测的原理,阐述了基于电子学的红外光谱细分和干涉成像原理,讨论了激光本振红外阵列探测器形式。激光本振和相干探测器的设置,可保证两个望远镜的红外信号相位的正确传递,在电子学实施窄带滤波形成的窄带红外信号有利于实现长基线干涉成像。在此基础上,类似微波综合孔径射电望远镜,通过不同空间位置的多个较小孔径,组合形成一个大的光学口径,以红外光谱“射电”望远镜形式实现高分辨率天文成像,可大幅降低红外成像系统的复杂度和体积重量。介绍了平流层飞艇平台的特点,该平台为长基线大衍射口径望远镜的安装提供了有利条件,且可大幅减少大气对天文观测的影响,有望成为天文观测的新型平台。给出了10 m基线、2 m衍射口径红外光谱干涉成像望远镜的布设方案,分析了其探测和成像性能,讨论了关键技术及其可能的技术途径。分析表明,基于平流层飞艇平台,3个2 m衍射口径望远镜的组合在10 m基线下可等效实现口径10 m望远镜的红外天文观测能力。
红外光谱 干涉成像 激光本振 衍射光学系统 平流层飞艇 天文观测 Infrared spectrum Interferometric imaging Laser local oscillator Diffractive optical system Stratospheric airship Astronomy observation 
光子学报
2021, 50(2): 1
作者单位
摘要
中国科学院西安光学精密机械研究所 空间光学技术研究室, 陕西 西安 710119
针对某空间天文相机对轻量化、光学效率、杂光抑制与探测能力的需求,设计Φ450 mm口径碳化硅主反射镜,镜体轻量化率超过70%;选取线膨胀系数匹配的殷钢材料,设计基于两脚架柔性结构的侧面支撑以消除装配应力和热应力,通过渗硅改性获取高反射率光学镜面。光学加工完成后反射镜质量7 kg,反射率优于98%。在严格的工艺条件控制下,对反射镜组件进行精密装配。光学检测结果表明,反射镜装配完成后面形误差优于0.02λ RMS,与分析结果吻合。证明了空间天文相机主反射镜组件结构设计方案与装调工艺的合理性,满足空间天文相机光学设计要求。
空间天文相机 碳化硅反射镜 轻量化设计 柔性支撑 space-based astronomy telescope SiC mirror light-weighted design flexure support 
红外与激光工程
2021, 50(2): 20200175
作者单位
摘要
1 中国科学院西安光学精密机械研究所,西安 710119
2 北京跟踪与通信技术研究所,北京 100094
3 中国科学院大学,北京 100190
针对中高轨碎片光电观测望远镜(简称中高轨望远镜)野外精度标定手段有限的难题,理论分析利用国产北斗导航卫星系统鉴定天文定位和轴系定位测量精度的方法,通过分析卫星覆盖性、轨道精度和亮度等因素研究方法的可行性.对定期公布的数据间隔约为5 min的精密星历进行拉格朗日插值处理,并进行坐标转换,解算望远镜观测时刻在天球赤道坐标系中卫星相对测站的视赤经和视赤纬以及卫星在测站坐标系中的方位值和俯仰值,作为理论真值鉴定天文定位和轴系定位测量精度.利用此方法检测某中高轨望远镜天文定位精度优于2″,轴系定位精度优于7″.
北斗导航卫星系统 光电望远镜 指向测量精度 天文定位 轴系定位 Beidou navigation satellite system Electro-optical telescope Orientation precision Astronomy orientation Axis orientation 
光子学报
2020, 49(10): 1012001
作者单位
摘要
河海大学 理学院,江苏 南京 210098
光纤定位技术是多目标光纤光谱望远镜中的关键技术,光纤定位精度是影响望远镜观测效率的重要因素,随着光谱巡天项目的开展,光纤定位单元的小型化、高密度化、集成化和高精度定位要求成为普遍趋势,这对光纤定位系统提出了更高技术要求和挑战。光纤定位技术也期望实现高精度的实时监测和反馈系统,形成有效的闭环控制。基于此提出了一种中心开孔型四象限探测器光纤定位技术,并利用二维高斯模型对中心开孔型四象限探测器定位算法进行了设计,该算法对单元光斑束腰单次标定,可实现高精度的多次实时光斑位置确定和光纤位置调整。利用光纤光谱仪望远镜原理搭建了模拟实验对此装置和算法的性能进行了模拟,应用此闭环控制方法,在四象限探测器零点偏置直径为4 mm、光纤截面积达到1 000 μm2情况下,绝对定位误差可以控制在6 μm之内,相对误差可控制在0.15%范围内,可以有效提高望远镜星象和光纤的耦合效率。
光纤定位 四象限探测器 天文观测 fiber positioning four-quadrant detector astronomy observation 
红外与激光工程
2020, 49(6): 20190466
Author Affiliations
Abstract
1 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
2 Key Laboratory of Space Object and Debris Observation, Chinese Academy of Sciences, Nanjing 210008, China
Space debris laser ranging was achieved with a 60 W, 200 Hz, 532 nm nanosecond slab, single-frequency green laser at the Shanghai Astronomical Observatory’s 60 cm satellite laser ranging system. There were 174 passes of space debris measured in 2017, with the minimum radar cross section (RCS) being 0.25 m2 and the highest ranging precision up to 13.6 cm. The RCS of space debris measured with the farthest distances in 174 passes was analyzed. The results show that the farthest measurement distance (R) and RCS (S) were fitted to R = 1388.159S0.24312, indicating that this laser can measure the distance of 1388.159 km at an RCS of 1 m2, which is very helpful to surveillance and research on low-Earth-orbit space debris.
140.3580 Lasers, solid-state 350.1270 Astronomy and astrophysics 140.3580 Lasers, solid-state 
Chinese Optics Letters
2019, 17(5): 051404

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!