Author Affiliations
Abstract
1 School of Metallurgy & Materials, University of Birmingham, Birmingham B15 2TT, United Kingdom
2 School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
3 School of Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
4 Department of Orthopedic Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, People’s Republic of China
Bio-inspired porous metallic scaffolds have tremendous potential to be used as artificial bone substitutes. In this work, a radially graded lattice structure (RGLS), which mimics the structures of natural human bones, was designed and processed by laser powder bed fusion of martensitic Ti-rich TiNi powder. The asymmetric tension-compression behaviour, where the compressive strength is significantly higher than the tensile strength, is observed in this Ti-rich TiNi material, which echoes the mechanical behaviour of bones. The morphologies, mechanical properties, deformation behaviour, and biological compatibility of RGLS samples were characterised and compared with those in the uniform lattice structure. Both the uniform and RGLS samples achieve a relative density higher than 99%. The graded porosities and pore sizes in the RGLS range from 40%-80% and 330-805 μm, respectively, from the centre to the edge. The chemical etching has significantly removed the harmful partially-melted residual powder particles on the lattice struts. The compressive yield strength of RGLS is 71.5 MPa, much higher than that of the uniform sample (46.5 MPa), despite having a similar relative density of about 46%. The calculated Gibson-Ashby equation and the deformation behaviour simulation by finite element suggest that the dense outer regions with high load-bearing capability could sustain high applied stress, improving the overall strength of RGLS significantly. The cell proliferation study suggests better biological compatibility of the RGLS than the uniform structures. The findings highlight a novel strategy to improve the performance of additively manufactured artificial implants by bio-inspiration.
additive manufacturing bio-inspired graded lattice mechanical properties biological compatibility 
International Journal of Extreme Manufacturing
2022, 4(4): 045003
作者单位
摘要
1 北京交通大学光电子技术研究所 发光与光信息教育部重点实验室, 北京 100044
2 中央民族大学 理学院, 北京 100081
作为一种新型的荧光探针, 量子点(QD)已经受到越来越多的重视, 制备工艺也显得格外重要。水相中合成的量子点效率低, 油相中的量子点经过转相以后效率也大大衰减。本论文利用再沉淀包覆的方法制备了具有良好的水溶性的掺杂绿光CdSe@ZnS的纳米颗粒G-NPs(534 nm)和掺杂红光CdSe@ZnS的纳米颗粒R-NPs(610 nm), 具有窄的半峰宽(G-NPs ~29 nm, R-NPs ~31 nm), 较小的粒径(45 nm), 并在此基础上通过发射光谱与荧光衰减研究了量子点之间的能量传递现象。该方法保留了量子点原来的性质, 基于其优良的光学性质, 对人类肝细胞肝癌细胞株(HepG2)进行了荧光标记, 从共聚焦成像实验结果看出, 纳米颗粒得到了良好的吞噬效果。
CdSe@ZnS量子点 生物兼容性 荧光标记 荧光寿命 能量传递 CdSe@ZnS quantum dots biological compatibility fluorescence labeling fluorescent lifetime energy transfer 
发光学报
2018, 39(10): 1339
作者单位
摘要
1 吉林大学 第一医院泌尿外科, 吉林 长春 130022
2 吉林大学电子科学与工程学院 集成光电子国家重点联合实验室, 吉林 长春 130021
以聚乙烯吡咯烷酮(PVP)为表面活性剂, 利用溶剂热法合成了NaYF4∶20%Yb3+, 3%Er3+(摩尔分数)的上转换发光纳米粒子。利用扫描电子显微镜对粒子的形貌进行了表征, 结果表明纳米颗粒的尺寸在30~40 nm, 分布比较均匀。在980 nm红外光的激发下, 样品能够发出肉眼可见的明亮的黄色上转换荧光。样品可以较好地分散在水溶液中形成透明澄清的溶液。利用MTT实验测量了不同给药浓度下NaYF4纳米粒子是否对HeLa细胞具有生物毒性。结果表明: PVP修饰的NaYF4∶Yb3+/Er3+上转换发光纳米粒子具有较好的生物兼容性, 对HeLa细胞无生物毒性, 在生物荧光标记领域具有潜在的应用价值。
水溶性纳米粒子 稀土 上转换发光 生物兼容性 water soluble nanopartical rare earth upconversion luminescence biological compatibility 
发光学报
2011, 32(10): 993

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!