作者单位
摘要
北京大学未来技术学院,国家生物医学成像科学中心,北京 100871
相干拉曼散射(CRS)技术作为一种重要的无标记化学成像技术,通过相干激发分子协同振动对拉曼散射信号进行增益,显著地提高了成像速度,广泛应用于材料学、生物化学、肿瘤诊断、药代动力学等领域。超快脉冲激光器的出现实现了亚皮秒持续时间的脉冲输出,使得通过脉冲激发实现大量振动模式的同步相干激发成为新的CRS实现途径。从相干拉曼散射基本原理出发,介绍时域相干拉曼散射的主要实现途径,着重讨论时域受激拉曼散射(SRS)和时域相干反斯托克斯拉曼散射(CARS)的最新进展与应用。
拉曼光谱技术 相干拉曼散射 受激拉曼散射 相干反斯托克斯拉曼散射 时域 频域 
激光与光电子学进展
2024, 61(6): 0618007
冯巩 1行霆燕 1王楠 1,*曾琦 1[ ... ]陈雪利 1,2,**
作者单位
摘要
1 西安电子科技大学生命科学技术学院西安市跨尺度生命信息智能感知与调控重点实验室,陕西 西安 710126
2 西安电子科技大学广州研究院先进医学影像与智慧医疗创新中心,广东 广州 510555
拉曼显微成像技术无需样本制备,具有无损、无创、对水溶液不敏感的优点,可在微米或纳米尺度下表征样本的生化组分及分布,成为生命科学领域重要的研究工具。随着对复杂生物样本研究的不断深入,拉曼显微成像也被期待能够实现对生物样本中的分子组成与分布的动态立体观测。首先,系统性地梳理近年来三维拉曼显微成像技术的研究进展,包括基于自发拉曼散射、相干拉曼散射、表面增强拉曼散射以及拉曼标签的不同三维成像方法的技术手段、改进策略与实验结果。然后,总结了不同成像技术在细胞生物学、发育生物学等方面的应用进展。最后展望了不同三维拉曼显微成像技术在生物医学光学显微成像技术应用中所面临的挑战和发展前景。
三维显微成像 拉曼显微成像 自发拉曼散射 相干拉曼散射 表面增强拉曼散射 拉曼标签 
激光与光电子学进展
2024, 61(6): 0618010
Author Affiliations
Abstract
1 Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
2 MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Cancer cells dysregulate lipid metabolism to accelerate energy production and biomolecule synthesis for rapid growth. Lipid metabolism is highly dynamic and intrinsically heterogeneous at the single cell level. Although fluorescence microscopy has been commonly used for cancer research, bulky fluorescent probes can hardly label small lipid molecules without perturbing their biological activities. Such a challenge can be overcome by coherent Raman scattering (CRS) microscopy, which is capable of chemically selective, highly sensitive, submicron resolution and high-speed imaging of lipid molecules in single live cells without any labeling. Recently developed hyperspectral and multiplex CRS microscopy enables quantitative mapping of various lipid metabolites in situ. Further incorporation of CRS microscopy with Raman tags greatly increases molecular selectivity based on the distinct Raman peaks well separated from the endogenous cellular background. Owing to these unique advantages, CRS microscopy sheds new insights into the role of lipid metabolism in cancer development and progression. This review focuses on the latest applications of CRS microscopy in the study of lipid metabolism in cancer.
Coherent Raman scattering microscopy cancer metabolism lipid metabolism 
Journal of Innovative Optical Health Sciences
2023, 16(3): 2230015
Author Affiliations
Abstract
1 State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, P. R. China
2 Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu, Zhejiang 322000, P. R. China
Benefiting from the developments of advanced optical microscopy techniques, the mysteries of biological functions at the cellular and subcellular levels have been continuously revealed. Stimulated Raman scattering (SRS) microscopy is a rapidly growing technique that has attracted broad attentions and become a powerful tool for biology and biomedicine, largely thanks to its chemical specificity, high sensitivity and fast image speed. This review paper introduces the principles of SRS, discusses the technical developments and implementations of SRS microscopy, then highlights and summarizes its applications on biological cellular machinery and finally shares our visions of potential breakthroughs in the future.Benefiting from the developments of advanced optical microscopy techniques, the mysteries of biological functions at the cellular and subcellular levels have been continuously revealed. Stimulated Raman scattering (SRS) microscopy is a rapidly growing technique that has attracted broad attentions and become a powerful tool for biology and biomedicine, largely thanks to its chemical specificity, high sensitivity and fast image speed. This review paper introduces the principles of SRS, discusses the technical developments and implementations of SRS microscopy, then highlights and summarizes its applications on biological cellular machinery and finally shares our visions of potential breakthroughs in the future.
Nonlinear optical microscopy vibrational spectral imaging coherent Raman scattering biological cells 
Journal of Innovative Optical Health Sciences
2023, 16(2): 2230010
作者单位
摘要
1 北京大学 物理学院 人工微结构和介观物理国家重点实验室,北京 100871
2 山西大学 极端光学协同创新中心,太原 030006
相干拉曼散射以其无标记、高灵敏、化学特异性等优势,被广泛应用于生物、医学、物理和化学的光谱与成像应用。通过对光场各项参数的调控,从时域、频域、相位、偏振等特性入手,可以解决光谱与成像应用中的实际问题。本文以光场调控原理为主线,综述了相干拉曼散射光谱与成像应用的研究进展。
相干拉曼散射 相干反斯托克斯拉曼散射 受激拉曼散射 光场调控 Coherent Raman scattering Coherent anti-Stokes Raman scattering Stimulated Raman scattering Engineering of optical fields 
光子学报
2022, 51(1): 0151108
作者单位
摘要
1 北京航空航天大学生物与医学工程学院北京市生物医学工程高精尖创新中心,北京 100191
2 北京大学生物医学前沿创新中心,北京,100871

生物样品存在着丰富的物质信息,每一种物质都有其自身独特的性质及功能,对这些物质在生物体内的产生、转运、分布等进行研究可以使我们更加深入地了解生物系统。具备良好化学特异性的光学显微镜为这些研究提供了强大且可靠的工具。拉曼散射技术由于解决了荧光显微镜所需的外源性标记所带来的问题,极大地促进了生物医学的发展。高光谱相干拉曼散射(hyperspectral coherent Raman scattering,HS-CRS)技术可对不同成分物质进行无标记化学成像,通过同时提供图像和光谱信息,对样品内物质的性质、含量和分布状况做出判断,为科研人员提供了更多维度的物质信息。HS-CRS技术在近几十年内进行了不断的技术更新并在生物医学领域完成新的技术应用,本文对主要的HS-CRS技术的实现形式及方案进行了介绍,并总结了HS-CRS技术在生物医学领域的应用。

高光谱成像 相干拉曼散射显微术 无标记成像 医用光子学 
激光与光电子学进展
2022, 59(6): 0617003
敖建鹏 1,2,*黄静 1,2季敏标 1,2,3,**
作者单位
摘要
1 复旦大学物理学系应用表面物理国家重点实验室,上海 200433
2 复旦大学人类表型组研究院,上海 200433
3 复旦大学义乌研究院,浙江 义乌322000
随着光学显微技术的发展,人们得以在亚微米级的尺度观察微观世界,对破译生命活动密码起到了关键性推动作用。其中,相干拉曼散射(CRS)显微术作为一类基于分子特定振动提供成像衬度的技术,通过非线性光学过程大大增强了拉曼散射的信号,提高了成像速率和检测的灵敏度。根据非线性光学过程的不同,可将相干拉曼散射分为相干反斯托克斯拉曼散射(CARS)和受激拉曼散射(SRS)。相较于CARS,SRS具有无非共振背景干扰、定量分析等优点,使之备受关注。将介绍相干拉曼散射的基本原理,并着重介绍受激拉曼散射的发展与应用。
非线性光学 光学显微术 相干拉曼散射 超快激光非线性成像 受激拉曼散射 
激光与光电子学进展
2022, 59(4): 0400001
作者单位
摘要
深圳大学物理与光电工程学院, 电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
相干拉曼散射显微技术作为一种新型的成像技术,具有无标记、高特异性、非侵入等优点,已被广泛用于化学结构及物质成分分析。近年来,光子学、生物医学和显微成像技术等领域的相互交叉和融合发展,极大地推动了相干拉曼散射显微成像技术在生物医学领域的应用。简要介绍了相干拉曼散射显微成像的基本原理、分类、系统构成,同时概述了相干拉曼散射显微成像技术近年来在生物医学领域的应用,包括检测、脂类分析和蛋白质构象变化等,最后对其未来发展进行了展望。
生物医学 相干拉曼散射显微技术 相干反斯托克斯拉曼散射 无标记成像 受激拉曼散射成像 
中国激光
2020, 47(2): 0207005
作者单位
摘要
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 复旦大学应用表面物理国家重点实验室和物理学系, 上海 200433
3 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
相干拉曼散射具有非侵入、无标记、化学特异性的优点,广泛用于生物组织成像、药代动力学等领域。主要介绍了光纤式相干拉曼散射(CRS)成像光源的实现方式及特点,总结了超连续谱展宽、孤子自频移和四波混频技术在提高双色超短脉冲输出功率、调谐范围、光谱分辨率方面的新进展。报道了基于四波混频的光参量振荡技术在产生可调谐双色超短脉冲方面的最新进展,采用全保偏光纤光路和光子晶体光纤,结合色散滤波和偏振操控技术,获得时间自同步、空间自重合、波长可调谐的双色超短脉冲,可实现脂类、蛋白和核酸的非侵入、无标记光谱检测与成像,为实现结构紧凑、使用方便、环境稳定的CRS提供了一个有效的技术途径。
非线性光学 相干反斯托克斯拉曼散射 四波混频 超快激光非线性成像 相干拉曼散射 
中国激光
2019, 46(5): 0508008
Author Affiliations
Abstract
1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
Synchronized time-lens source is a novel method to generate synchronized optical pulses to modelocked lasers, and has found widespread applications in coherent Raman scattering microscopy. Relative timing jitter between the mode-locked laser and the synchronized time-lens source is a key parameter for evaluating the synchronization performance of such synchronized laser systems. However, the origins of the relative timing jitter in such systems are not fully determined, which in turn prevents the experimental efforts to optimize the synchronization performance. Here, we demonstrate, through theoretical modeling and numerical simulation, that the photodetection could be one physical origin of the relative timing jitter. Comparison with relative timing jitter due to the intrinsic timing jitter of the mode-locked laser is also demonstrated, revealing different qualitative and quantitative behaviors. Based on the nature of this photodetection-induced timing jitter, we further propose several strategies to reduce the relative timing jitter. Our theoretical results will provide guidelines for optimizing synchronization performance in experiments.
Synchronized time-lens source coherent Raman scattering microscopy. 
Journal of Innovative Optical Health Sciences
2017, 10(5): 1743003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!