余惠 1,2丁新辉 1,2李大为 1周琼 1[ ... ]卢兴强 1,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
针对具有圆对称结构特征的光束,提出了一种基于高阶准离散汉克尔变换的光束整形算法。与传统Gerchberg-Saxton算法相比,相同条件下,该算法能够在较少的迭代次数内实现快速收敛,并大幅节省计算时间(约100倍),利用该算法设计的衍射光学元件呈圆对称分布,结构简单、更易于加工;此外,设计实验对目标光束整形,验证了该算法的可行性,实验结果光强分布较好,为衍射光学元件的设计和加工提供了重要的指导意义。
物理光学 汉克尔变换 光束整形算法 Gerchberg-Saxton算法 衍射光学元件 
光学学报
2024, 44(7): 0726001
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
研究了富勒烯对六官能团脂肪族聚氨酯丙烯酸酯/环氧树脂(RJ423/ EPIKOTE 828)体系光致聚合物的全息性能的影响,分析了富勒烯(C60)材料以及曝光光强对光致聚合物衍射效率的影响。通过吸收光谱结合X射线衍射图谱分析,掺杂的富勒烯既没有和聚合物中的其他成分发生化学反应,也不影响材料本身的结构和结晶性能。实验结果表明,富勒烯掺杂提高了单体聚合反应的速率,并且参与活性单体分子之间的扩散。在光强20 mW/cm2、时间40~50 s、厚度200 μm时,光致聚合物的衍射效率提升到86%,感光灵敏度达到1.32 cm2/J,收缩率降低了约80%。由于C60促进聚合,抑制体积收缩,从而增强全息存储的稳定性,经过全息图像存储实验对比,证明该光致聚合物掺杂富勒烯之后具有优秀的全息存储性能,同时也表明富勒烯掺杂的光致聚合物在全息储存领域具有较大的应用前景。
衍射光学 富勒烯 衍射效率 光致聚合物 全息光存储 diffractive optics fullerene diffraction efficiency photopolymer holographic optical storage 
光学仪器
2024, 46(1): 23
作者单位
摘要
1 西安工业大学光电工程学院,陕西 西安 710021
2 西安应用光学研究所,陕西 西安 710065
针对空间相机轻量化、小型化要求,采用一体式环形孔径透镜。由于基底单一和结构紧凑,系统存在色差和球差,引入衍射光学元件和偶次非球面校正像差,而单层衍射光学元件在宽波段存在衍射效率下降等问题,设计了一种端到端式光学-数字联合成像系统,对影响衍射效率主要级次的点扩散函数进行一致性优化,构建出空间不变的点扩散函数模型,为后续图像复原建立复原函数模型,实现退化图像的复原。最终光学-数字联合成像系统工作波段确定为0.45~1 μm,焦距为185 mm,视场为5°,F数为4,遮拦比为0.35,系统总长为67.8 mm。
光学设计 环形孔径 单层衍射光学元件 端到端设计 图像复原 
激光与光电子学进展
2024, 61(4): 0411006
Author Affiliations
Abstract
1 University of California, Los Angeles, Electrical and Computer Engineering Department, Los Angeles, California, United States
2 University of California, Los Angeles, Bioengineering Department, Los Angeles, California, United States
3 University of California, Los Angeles, California NanoSystems Institute (CNSI), Los Angeles, California, United States
As an optical processor, a diffractive deep neural network (D2NN) utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing, completing its tasks at the speed of light propagation through thin optical layers. With sufficient degrees of freedom, D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light. Similarly, D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination; however, under spatially incoherent light, these transformations are nonnegative, acting on diffraction-limited optical intensity patterns at the input field of view. Here, we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light. Through simulations, we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products, a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination. The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors.
optical computing optical networks machine learning diffractive optical networks diffractive neural networks image encryption 
Advanced Photonics Nexus
2024, 3(1): 016010
作者单位
摘要
天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室,天津 300072
提出一种基于计算成像理论的端到端衍射元件设计方法,通过全局性优化方案将光学设计和图像复原作为整体,从而降低前端光学系统的成像质量要求,并利用图像复原算法去除残余像差以简化系统。所提设计方法涵盖光场传播、探测器去噪和图像后处理等关键环节的模型建立与联合优化。该设计方案可用于景深延展的轻薄型衍射元件的设计,且所适用的大景深的简单光学系统具有较高的成像质量。
成像系统 端到端 景深延展 图像复原 衍射元件 
光学学报
2024, 44(2): 0211001
Author Affiliations
Abstract
1 Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
2 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3 Nokia Shanghai Bell Co., Ltd., Shanghai 201206, China
4 College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
Edge detection for low-contrast phase objects cannot be performed directly by the spatial difference of intensity distribution. In this work, an all-optical diffractive neural network (DPENet) based on the differential interference contrast principle to detect the edges of phase objects in an all-optical manner is proposed. Edge information is encoded into an interference light field by dual Wollaston prisms without lenses and light-speed processed by the diffractive neural network to obtain the scale-adjustable edges. Simulation results show that DPENet achieves F-scores of 0.9308 (MNIST) and 0.9352 (NIST) and enables real-time edge detection of biological cells, achieving an F-score of 0.7462.
diffractive neural network edge detection phase objects 
Chinese Optics Letters
2024, 22(1): 011102
作者单位
摘要
盐城师范学院 物理与电子工程学院,江苏盐城224007
对于宽入射角工作的衍射光学元件,提出了高带宽积分平均衍射效率的优化设计方法。通过复合带宽积分平均衍射效率的最大化设计,得到设计波长和设计入射角度,进一步可以计算得到微结构高度。分析了衍射效率对折衍射混合光学系统调制传递函数的影响。优化设计了一套含有衍射光学元件的折衍射混合目镜系统。目镜由三片透镜组成。考虑衍射光学元件的衍射效率,最大视场处目镜系统的调制传递函数高于0.42。该方法为混合光学系统的像质评价提供了依据。
衍射光学 广角 衍射效率 目镜 diffractive optics wide angle diffraction efficiency eyepiece 
光电子技术
2023, 43(4): 347
作者单位
摘要
四川大学电子信息学院, 四川成都 610065
概述了微波无线能量传输系统的研究现状及其基本原理, 从可提高波束能量的一些特殊口径场以及先进的天线技术角度, 分别按 Whisper波束、超增益天线、平顶波束、聚焦天线技术、非衍射天线进行介绍。最后对微波能量传输系统中发射技术的未来发展趋势进行了展望。
微波无线能量传输系统 Whisper波束 超增益天线 平顶波束 聚焦天线技术 非衍射天线 microwave wireless energy transmission system Whisper beam super gain antenna flat-top beam focused antenna technology non-diffractive antenna 
太赫兹科学与电子信息学报
2023, 21(4): 498
作者单位
摘要
西安科技大学 通信与信息工程学院, 西安 710600
针对OAM通信系统中相干OAM复用光束的解调技术,提出了一种基于纯振幅型衍射深度神经网络(D2NN)的OAM相干复用解调实现方法。通过数值实验研究了D2NN解调器对四相OAM相干复用波束的解调性能,使用误码率(BER)对其性能进行了表征。为了降低D2NN解调的误码率,提出了一种改进的OAM选择策略。并与纯相位型D2NN解调器进行性能对比,仿真实验结果表明,该方法对四相OAM相干复用波束具有较高的解复用和解调精度有着明显优势,为OAM相干复用通信提供了一种灵活的实时解调方法。
轨道角动量 相干复用 衍射深度神经网络 解调 机器学习 orbital angular momentum coherent multiplexing deep diffractive neural network demodulation machine learning 
光学技术
2023, 49(5): 544
Author Affiliations
Abstract
1 Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, China
2 Department of Precision Instruments, Tsinghua University, Beijing, China
3 Center for Optics, Photonics and Lasers, Laval University, Quebec, Canada
4 Research Institute of Intelligent Sensing, Research Center for Humanoid Sensing,Zhejiang Lab, Hangzhou, China
Diffractive optical elements (DOEs) are intricately designed devices with the purpose of manipulating light fields by precisely modifying their wavefronts. The concept of DOEs has its origins dating back to 1948 when D. Gabor first introduced holography. Subsequently, researchers introduced binary optical elements (BOEs), including computer-generated holograms (CGHs), as a distinct category within the realm of DOEs. This was the first revolution in optical devices. The next major breakthrough in light field manipulation occurred during the early 21st century, marked by the advent of metamaterials and metasurfaces. Metasurfaces are particularly appealing due to their ultra-thin, ultra-compact properties and their capacity to exert precise control over virtually every aspect of light fields, including amplitude, phase, polarization, wavelength/frequency, angular momentum, etc. The advancement of light field manipulation with micro/nano-structures has also enabled various applications in fields such as information acquisition, transmission, storage, processing, and display. In this review, we cover the fundamental science, cutting-edge technologies, and wide-ranging applications associated with micro/nano-scale optical devices for regulating light fields. We also delve into the prevailing challenges in the pursuit of developing viable technology for real-world applications. Furthermore, we offer insights into potential future research trends and directions within the realm of light field manipulation.
diffractive optical elements metasurfaces metamaterials 
Photonics Insights
2023, 2(4): R09

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!