郭鹏星 1,2游正容 1,2侯维刚 1,2,*郭磊 1,2
作者单位
摘要
1 重庆邮电大学通信与信息工程学院,重庆 400065
2 重庆邮电大学智能通信与网络安全研究院,重庆 400065
提出了一种渐进式训练方案来重新配置马赫-曾德尔干涉仪(MZI)前馈光学神经网络(ONN)的相移,从而对抗MZI的相位误差和分束器误差,提高识别准确率。为了验证所提方案,利用Neuroptica Python仿真平台搭建了3层MZI-ONN结构,并在考虑到MZI相位误差和分束器误差的情况下,利用Iris和MNIST数据集验证了所提方案的有效性。仿真结果表明:在Iris数据集下,对于3层4×4 MZI-ONN结构,所提方案的识别准确率能够提升64.15百分点;在MNIST数据集下,对于4×4、6×6、8×8和16×16规模的MZI-ONN,所提方案的识别准确率能够提升2.00~37.00百分点。所提方案极大地提高了MZI-ONN的抗误差性能,有助于未来大规模、高准确率MZI-ONN的实现。
光计算 马赫-曾德尔干涉仪 光学神经网络 相位误差 分束器误差 渐进式训练 抗误差 
光学学报
2024, 44(7): 0720001
Author Affiliations
Abstract
1 Tsinghua University, Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Beijing, China
2 National University of Defense Technology, College of Advanced Interdisciplinary Studies, Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, Changsha, China
On-chip diffractive optical neural networks (DONNs) bring the advantages of parallel processing and low energy consumption. However, an accurate representation of the optical field’s evolution in the structure cannot be provided using the previous diffraction-based analysis method. Moreover, the loss caused by the open boundaries poses challenges to applications. A multimode DONN architecture based on a more precise eigenmode analysis method is proposed. We have constructed a universal library of input, output, and metaline structures utilizing this method, and realized a multimode DONN composed of the structures from the library. On the designed multimode DONNs with only one layer of the metaline, the classification task of an Iris plants dataset is verified with an accuracy of 90% on the blind test dataset, and the performance of the one-bit binary adder task is also validated. Compared to the previous architectures, the multimode DONN exhibits a more compact design and higher energy efficiency.
optical computing mode multiplexing diffraction optical neural network 
Advanced Photonics Nexus
2024, 3(2): 026007
Author Affiliations
Abstract
1 University of California, Los Angeles, Electrical and Computer Engineering Department, Los Angeles, California, United States
2 University of California, Los Angeles, Bioengineering Department, Los Angeles, California, United States
3 University of California, Los Angeles, California NanoSystems Institute (CNSI), Los Angeles, California, United States
As an optical processor, a diffractive deep neural network (D2NN) utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing, completing its tasks at the speed of light propagation through thin optical layers. With sufficient degrees of freedom, D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light. Similarly, D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination; however, under spatially incoherent light, these transformations are nonnegative, acting on diffraction-limited optical intensity patterns at the input field of view. Here, we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light. Through simulations, we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products, a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination. The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors.
optical computing optical networks machine learning diffractive optical networks diffractive neural networks image encryption 
Advanced Photonics Nexus
2024, 3(1): 016010
符庭钊 1,4,5孙润 2,3黄禹尧 2,3张检发 1,4,5[ ... ]陈宏伟 2,3,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 清华大学电子工程系,北京 100084
3 北京信息科学与技术国家研究中心,北京 100084
4 国防科技大学新型纳米光电信息材料与器件湖南省重点实验室,湖南 长沙 410073
5 国防科技大学南湖之光实验室,湖南 长沙 410073
光学神经网络是区别于冯·诺依曼计算架构的一种高性能新型计算范式,具有低延时、低功耗、大带宽以及并行信号处理等优势。片上集成是光学神经网络微型化发展的一种典型方式,近年来片上集成光学神经网络获得了学术界及工业界的广泛关注。对基于不同计算单元结构的片上集成光学神经网络的相关研究工作进行了梳理,并分析了其设计原理、实现方法及系统架构特征。同时结合国内外最新研究进展,进一步分析了片上集成光学神经网络在计算单元大规模拓展、可重构、非线性运算和实用化等方面面临的挑战及其未来发展趋势。
集成光学 光计算 光学神经网络 芯片 人工智能 
中国激光
2024, 51(1): 0119002
Author Affiliations
Abstract
1 Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
2 School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
Object identification and three-dimensional reconstruction techniques are always attractive research interests in machine vision, virtual reality, augmented reality, and biomedical engineering. Optical computing metasurface, as a two-dimensional artificial design component, has displayed the supernormal character of controlling phase, amplitude, polarization, and frequency distributions of the light beam, capable of performing mathematical operations on the input light field. Here, we propose and demonstrate an all-optical object identification technique based on optical computing metasurface, and apply it to 3D reconstruction. Unlike traditional mechanisms, this scheme reduces memory consumption in the processing of the contour surface extraction. The identification and reconstruction of experimental results from high-contrast and low-contrast objects agree well with the real objects. The exploration of the all-optical object identification and 3D reconstruction techniques provides potential applications of high efficiencies, low consumption, and compact systems.
object identification three-dimensional reconstruction optical computing metasurface 
Opto-Electronic Advances
2023, 6(12): 230120
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Service Networks, State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, Xidian University, Xi’an 710071, China
2 Yongjiang Laboratory, Ningbo 315202, China
3 Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, the National Laboratory of Solid State Microstructures, the College of Engineering and Applied Sciences, Institute of Optical Communication Engineering, Nanjing University, Nanjing 210023, China
Spiking neural networks (SNNs) utilize brain-like spatiotemporal spike encoding for simulating brain functions. Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuromorphic computing. Here, we proposed a multi-synaptic photonic SNN, combining the modified remote supervised learning with delay-weight co-training to achieve pattern classification. The impact of multi-synaptic connections and the robustness of the network were investigated through numerical simulations. In addition, the collaborative computing of algorithm and hardware was demonstrated based on a fabricated integrated distributed feedback laser with a saturable absorber (DFB-SA), where 10 different noisy digital patterns were successfully classified. A functional photonic SNN that far exceeds the scale limit of hardware integration was achieved based on time-division multiplexing, demonstrating the capability of hardware-algorithm co-computation.
photonic spiking neural network fabricated DFB-SA laser chip multi-synaptic connection optical computing 
Opto-Electronic Science
2023, 2(9): 230021
作者单位
摘要
上海交通大学机械与动力工程学院机械系统与振动国家重点实验室,上海 200240
为提高光度立体视觉技术处理各向同性非朗伯反射的能力,提出一种基于深度学习的逆向反射模型,通过提取与方位角差相关的图像特征,弥补共位光源逆向反射模型的理论不足,实现表面法向量高精度估计。该模型由三阶段子网络组成,分别是方位角差子网络、逆向反射模型子网络与法向量估计子网络,其中:第一阶段子网络与第二阶段子网络共同实现像素值到法向量以及入射光线方向点积的高精度映射;第三阶段子网络充分利用前两个子网络提取的特征,实现表面法向量高精度估计。仿真实验表明,所提方法对100种典型各向同性非朗伯反射均具有较好的处理能力;基于标准数据集的真实实验证明,所提方法能够取得平均5.90°的法向量估计精度,充分证明所提方法的有效性。
光计算 深度学习 非朗伯反射 光度立体视觉 
光学学报
2023, 43(21): 2120001
Author Affiliations
Abstract
1 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
2 INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
Extreme Learning Machines (ELMs) are a versatile Machine Learning (ML) algorithm that features as the main advantage the possibility of a seamless implementation with physical systems. Yet, despite the success of the physical implementations of ELMs, there is still a lack of fundamental understanding in regard to their optical implementations. In this context, this work makes use of an optical complex media and wavefront shaping techniques to implement a versatile optical ELM playground to gain a deeper insight into these machines. In particular, we present experimental evidences on the correlation between the effective dimensionality of the hidden space and its generalization capability, thus bringing the inner workings of optical ELMs under a new light and opening paths toward future technological implementations of similar principles.
Extreme Learning Machine Optical Computing Machine Learning Optics 
Journal of the European Optical Society-Rapid Publications
2023, 19(1): 2023001
Author Affiliations
Abstract
Xiamen University, Department of Physics, Xiamen, China
Orbital angular momentum (OAM), emerging as an inherently high-dimensional property of photons, has boosted information capacity in optical communications. However, the potential of OAM in optical computing remains almost unexplored. Here, we present a highly efficient optical computing protocol for complex vector convolution with the superposition of high-dimensional OAM eigenmodes. We used two cascaded spatial light modulators to prepare suitable OAM superpositions to encode two complex vectors. Then, a deep-learning strategy is devised to decode the complex OAM spectrum, thus accomplishing the optical convolution task. In our experiment, we succeed in demonstrating 7-, 9-, and 11-dimensional complex vector convolutions, in which an average proximity better than 95% and a mean relative error <6 % are achieved. Our present scheme can be extended to incorporate other degrees of freedom for a more versatile optical computing in the high-dimensional Hilbert space.
optical computing complex vector convolution orbital angular momentum photonic spatial modes 
Advanced Photonics Nexus
2023, 2(4): 046008
陈蓓 1张肇阳 1戴庭舸 2余辉 1,3[ ... ]杨建义 1,*
作者单位
摘要
1 浙江大学信息与电子工程学院,浙江 杭州 310027
2 浙江大学宁波理工学院,浙江 宁波 315100
3 之江实验室,浙江 杭州 310027
由于光传输具备高通量、低延迟、低能耗等优势,光学神经网络有望应对目前人工智能技术发展中所面临的能耗和计算效率的挑战,成为近年来学术界和工业界的研究热点。光学神经网络的目标在于用光子作为物理载体构建人工神经网络算法中的基本计算单元,从而实现高性能的新型计算架构,并将其应用于实际问题的解决。本综述介绍了光学神经网络中关键光子器件的工作原理和特点、系统架构特征与应用场景。在跟踪大量国内外研究进展后,进一步分析了光学神经网在系统实现上所面临的挑战及发展趋势。
光计算 光学神经网络 线性矩阵计算 非线性激活器 
激光与光电子学进展
2023, 60(6): 0600001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!