王振诺 1,2仲莉 1,2,*张德帅 1,2,**刘素平 1[ ... ]马骁宇 1,2
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程研究中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
采用非对称大光腔外延结构设计制备出976 nm InGaAs/GaAsP应变补偿量子阱脊形半导体激光器,通过对外延结构的设计优化,以实现器件低远场发散角、低功耗的基横模稳定输出。所制备基横模脊形半导体激光器的脊宽为5 μm、腔长为1500 μm,在25 ℃测试温度下,可获得422 mW最大连续输出功率,峰值波长为973.3 nm,光谱线宽(FWHM)为1.4 nm。当注入电流为500 mA时,垂直和水平远场发散角(FWHM)分别为24.15°和3.90°。在15~35 ℃测试温度范围内对脊形半导体激光器的水平远场发散角进行测试分析,发现随着测试温度的升高,器件远场分布变化较小,水平远场发散角基本维持在3.9°左右。
激光器 976 nm半导体激光器 基横模脊形波导 低远场发散角 非对称大光腔结构 
光学学报
2024, 44(8): 0814002
作者单位
摘要
长春理工大学高功率半导体激光国家重点实验室,吉林 长春 130022
半导体激光器在光通信、生物医疗、激光雷达等领域中得到广泛应用,其单模稳定输出特性一直是国内外的研究热点。制备了一种基于表面高阶曲线光栅的宽脊波导半导体激光器,刻蚀曲线型高阶光栅后高阶横模损耗远大于基横模损耗,同时设置宽脊电流限制注入结构,使得高阶横模激射阈值高于基横模阈值,从而改善器件的横模特性并压窄光谱线宽。利用温控模块将器件的工作温度控制为18 ℃,对腔长为2 mm、条宽为500 μm的器件进行测试,在0.5 A电流下测得慢轴发散角为5.3°,快轴发散角为29.2°,在1 A驱动电流下测得3 dB光谱线宽为0.173 nm,边模抑制比为22.6 dB。实验结果表明,表面高阶曲线光栅对宽脊波导半导体激光器中的高阶横模起到了抑制作用且能够压窄光谱线宽,有助于实现半导体激光器的单模稳定输出,同时器件采用紫外光刻工艺,大幅降低了器件的制备难度。
激光器 半导体激光器 高阶布拉格光栅 曲线光栅 高阶横模 远场发散角 
中国激光
2024, 51(8): 0801006
作者单位
摘要
1 广东先导院科技有限公司,广东 广州 510535
2 度亘核芯光电技术(苏州)有限公司,江苏 苏州 215124
976 nm高功率半导体激光芯片是光纤激光器的核心部件,具有极为重要的产业价值。报道了课题组在高效率高功率半导体激光芯片的设计、制作与测试方面的研究成果。为了最大限度地提高器件的功率转换效率,同时满足苛刻的寿命要求,在设计上采用双非对称大光腔波导结构,同时对量子阱结构、波导结构、掺杂以及器件结构进行了优化;在外延生长方面,系统地优化了生长工艺参数,确保了外延材料具有极高的内量子效率及低内损耗。大量测试表明:所制作的器件(腔长为5 mm、发光条宽为200 μm的芯片)在室温、连续波(CW)测试条件下,阈值电流约为1 A,斜率效率为1.14 W/A;当电流为9 A时,最高功率转换效率高达72.4%;当电流为30 A时,输出功率达到29.4 W,功率转换效率为61.3%;对应于95%光场能量的水平远场发散角低至8.7°。上述参数性能已经达到了国际同类产品的先进水平。
激光器 半导体激光芯片 高功率转换效率 高功率 低水平远场发散角 976 nm 
中国激光
2024, 51(7): 0701017
Author Affiliations
Abstract
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
A concept of divergence angle of light beams (DALB) is proposed to analyze the depth of field (DOF) of a 3D light-field display system. The mathematical model between DOF and DALB is established, and the conclusion that DOF and DALB are inversely proportional is drawn. To reduce DALB and generate clear depth perception, a triple composite aspheric lens structure with a viewing angle of 100° is designed and experimentally demonstrated. The DALB-constrained 3D light-field display system significantly improves the clarity of 3D images and also performs well in imaging at a 3D scene with a DOF over 30 cm.
3D light-field display depth of field divergence angle of light beams compound lens 
Chinese Optics Letters
2024, 22(1): 011101
作者单位
摘要
华中光电技术研究所- 武汉光电国家研究中心, 湖北 武汉 430223
光电跟踪仪光轴平行性要求与跟踪瞄准精度、激光测距传感器照射激光光束发散角、激光回波接收系统探测视场有关, 尤其是对于小目标, 还与激光测距作用距离和探测概率有关。从光电跟踪仪激光测距原理和指标要求出发, 分析照射光束能量分布特点, 考虑温度、振动等环境因素和变调焦引起的光轴稳定性误差, 提出了光电跟踪仪光轴平行性要求的计算方法。同时根据工程实践考虑光电传感器原位更换和现场标校的维修性, 建立了光轴平行性误差分配模型, 讨论了各随机误差项、各标校残余误差项的一般控制要求和估计方法, 为光电跟踪仪设计分析、制造工艺、维修性改进提供参考。
光电跟踪仪 光轴平行性 激光测距 跟踪瞄准 光束发散角 optoelectronic tracker optical axis parallelism laser ranging tracking and targeting beam divergence angle 
光学与光电技术
2023, 21(6): 0034
作者单位
摘要
1 青岛科技大学信息科学技术学院, 山东 青岛 266061
2 江西中烟工业有限责任公司信息中心, 江西 南昌 330096
3 中国海洋大学信息科学与工程学部, 山东 青岛 266100
近红外光谱具有高维、 高冗余、 非线性的特性, 严重影响了样本之间的相似性度量的精准, 故而提出了一种基于Wasserstein散度的t分布随机近邻嵌入算法(Wt-SNE)。 基于流形学习算法思想, 利用高斯分布将高维数据的距离转换为概率分布, 使用更加偏重长尾分布的方式t分布表示低维空间中对应数据点的概率分布。 将高维数据的概率分布嵌入映射至低维度空间, 重构低维流形结构, 引入Wasserstein散度度量两个空间内概率分布的差异, 通过降低散度值来提高两个分布的相似度, 以此来实现高维数据降维处理。 为验证Wt-SNE算法的有效性, 首先对烟叶近红外光谱数据进行降维投影, 并与PCA、 LPP、 t-SNE算法比较, 结果表明Wt-SNE算法降维后的数据, 在低维空间内样本类别边界更加明显。 其次, 采用KNN、 SVM和PLS-DA分类器对降维后的数据进行烟叶产地预测, 准确率分别为93.8%、 91.5%、 92.7%, 表明降维后的数据不仅重构了原始光谱的空间结构而且保留了样本间的相似度关系。 最后, 选取某一卷烟叶组配方中的烟叶进行单料目标烟叶的替换, 根据备选样本与目标样本之间的马氏距离选取替换样本。 实验表明, Wt-SNE选取的替换烟叶与目标烟叶相似度最高, 烟碱、 总糖等化学成分含量与目标烟叶差异较小, 香气、 烟气、 口感得分表现出较高的一致性。 该方法能够有效度量烟叶近红外光谱之间的相似性, 为卷烟叶组配方的维护提供有力的依据。
近红外光谱 数据降维 t-SNE算法 Wasserstein散度 相似性度量 Near-infrared spectrum Data dimension reduction t-SNE algorithm Wasserstein divergence Similarity measurement 
光谱学与光谱分析
2023, 43(12): 3806
作者单位
摘要
中国科学院 合肥物质科学研究院 等离子体物理研究所,合肥 230031
负离子源中性束注入(NNBI)系统是聚变堆主机关键系统综合研究设施(CRAFT)的组成部分,其目标是开展NNBI相关的科学与工程问题研究,为未来聚变堆NNBI系统的研制与运行积累经验。加速器的束流光学特性决定着最终形成束流的发散性,进而影响着束流在加速器和束线中的传输效率,这对NNBI系统的高功率、高能量、长脉冲运行至关重要。为此,采用IBSimu离子束流模拟程序对目前CRAFT NNBI的400 keV加速器电极系统的物理设计进行束流光学特性分析与评估。目前该套电极结构的设计与ITER负离子源类似,束发散的计算结果满足设计要求。在负离子束流密度较高时(100~300 A/m2范围内),具有更小束发散角;引出距离(5~7 mm范围内)和加速距离(88~110 mm范围内)的适当增加,也呈现出束发散角下降趋势。
中性束注入 负离子源 静电加速器 束流光学 束流发散 neutral beam injection negative ion source electrostatic accelerator beam optics beamlet divergence 
强激光与粒子束
2023, 35(11): 114001
李雪强 1,2吴芳 1,2龚爽 1,2步扬 1,2,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
建立了基于泰森多边形排布的随机微透镜阵列激光光场复相干度调制模型,分析了旋转随机微透镜阵列参数对激光发散角以及激光光场复相干度模的影响规律。仿真与实验结果表明:子透镜单元的平均口径与曲率半径共同影响随机微透镜阵列的发散角,通过控制随机微透镜阵列子透镜单元的参数可提供特定发散角;随机微透镜阵列转速影响激光光场复相干度的模,复相干度的模随转速增加而下降,转速从0增加至4800 r/min,复相干度的模下降总幅度为96.67%,且随转速增加下降趋势逐渐变缓。
激光光学 激光光场 随机微透镜阵列 复相干度 发散角 
中国激光
2023, 50(19): 1905002
作者单位
摘要
西南交通大学 物理科学与技术学院,成都 610031
开展了E型波导振荡器永磁引导系统的物理与设计研究。对强流相对论电子束在理想方波形反转引导磁场中的传输条件进行了理论分析,给出了相对论条件下轴对称复合场中电子束的傍轴轨迹方程和最小引导磁场的计算公式。根据该理论分析,针对C波段E型波导振荡器高频互作用区的结构特点,设计了反转永磁引导系统,同时给出了漂移管内各个磁场分量的表达式。该系统由轴径向磁化空心永磁体组合产生反转引导磁场,永磁体的总质量约为2.5 kg。采用爆炸发射阴极,展示了强流相对论电子束在该引导磁场中的传输特性。研究结果显示,所设计反转永磁引导系统可引导400 kV、580 A的环形电子束稳定通过半径为6 mm的漂移管,带入器件,得到112.5 MW的4.8 GHz微波输出功率,效率为48.49%,确定了反转永磁引导系统应用于E型波导振荡器的技术可能性。
反转永磁引导磁场 E型波导振荡器 强流相对论环形电子束 粒子仿真 能散度 reverse permanent magnet guidance magnetic field E-type waveguide oscillator annular intense relativistic electron beam particle simulation energy divergence 
强激光与粒子束
2023, 35(7): 073002
作者单位
摘要
1 太原理工大学电气与动力工程学院,太原 030000
2 武汉光迅科技股份有限公司,武汉 430074
3 太原理工大学信息与计算机学院,太原 030000
针对传统选择性区域生长叠层双有源区电吸收调制激光器(SAG-DSAL-EML)在高频调制环境下的响应速度问题以及改善其远场发散角特性,文章提出利用掺铁掩埋技术对电吸收调制激光器(EML)结构进行优化,设计了InGaAsP/InP材料1 310 nm掺铁掩埋结构的SAG-DSAL-EML并制作样本芯片,新型SAG-DSAL-EML有源区变为台面结构,并在其两层外延生长掺铁InP层。同时,利用先进激光二极管模拟器(ALDS)软件和高频结构仿真(HFSS)软件对所设计掺铁掩埋结构的EML和调制器进行数值及仿真分析,结果表明,与传统多量子阱结构相比,SAG-DSAL-EML阈值电流减少了13%;与传统脊波导结构相比,掺铁掩埋结构的侧向限制能力提高52%,激光远场横纵角度之差降低了40%,具有更小的远场发散角;与传统PNPN掩埋结构相比,掺铁掩埋结构的调制器在-3 dB的响应带宽提高了约24%。对样本芯片进行测试,试验表明,SAG-DSAL-EML的阈值电流为14.5 mA,边模抑制比(SMSR)为45.64 dB,70 mA注入电流下,电吸收调制器-3 dB的响应带宽为43 GHz,满足高速激光通信的基本要求。
电吸收调制激光器 台面结构 掺铁掩埋技术 调制带宽 远场发散角 electro-absorption modulated laser mesa structure iron-doped buried technology modulation bandwidth far-field divergence angle 
光通信研究
2023, 49(2): 69

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!