巨燕方 1,2顾国超 1李博 1,*林冠宇 1,4[ ... ]徐彬 3
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 中国电子科技集团有限公司第二十二研究所,山东 青岛 266107
4 许健民气象卫星创新中心,北京 100081
电离层空间环境复杂,紫外波段辐射能量微弱,如何抑制远紫外高光谱成像仪杂散光是研究远紫外电离层高光谱载荷的重要环节。依据系统技术要求,给出单超环面光栅型高光谱成像仪杂散光抑制方法,首先分析杂散光的主要来源和传播路径,利用UG软件设计消杂光结构,使用LightTools软件仿真不同视场和不同光栅衍射级次下接收面的能量响应,评估杂散光抑制效果。结果表明:视场外杂散光能量和视场内光线能量量级相差10-5~10-7,光栅非工作衍射级次光线能量和工作级次能量量级相差10-6~10-8,中心波长处光谱杂光系数为0.9975%,所提方法满足空间远紫外高光谱遥感指标要求。
杂散光 远紫外 电离层 超环面光栅 高光谱成像仪 
激光与光电子学进展
2023, 60(10): 1030001
作者单位
摘要
中国科学院西安光学精密机械研究所,陕西 西安 710119
为改善干涉成像短波红外高速高光谱成像仪的坏像元对复原光谱的影响,利用高光谱成像仪测试流程建立了坏像元识别模板,以提高坏像元识别效率。首先,按照高光谱成像仪测试流程设置增益模板和帧频模板并采集图像数据,依据正常像元增益响应设定合理判定阈值Th1,识别不同增益下异常像元并记录对应坐标值;再依据正常像元帧频响应灰度值设定合理判定阈值Th2,识别不同帧频下异常像元并记录坐标值。最后,对比增益模板和帧频模板判定的异常像元,融合确定坏像元。实验结果表明基于增益模板和帧频模板的识别方法在不增加设备研制测试成本的同时有效识别出短波红外高光谱成像仪探测器的坏像元,为可靠识别短波红外高光谱成像仪坏像元提供了一种低成本、高效可靠的新方法,提高了干涉成像高光谱成像仪光谱反演准确性。
坏像元识别 短波红外 干涉成像 高光谱成像仪 bad pixel recognition shortwave infrared interference imaging hyperspectral imager 
红外与激光工程
2023, 52(2): 20220308
何赛灵 1,2李硕 1陈祥 1徐展鹏 1,2[ ... ]罗龙强 1
作者单位
摘要
1 国家光学仪器工程研究中心 浙江大学光及电磁波研究中心,浙江 杭州 310058
2 浙江大学 宁波研究院,浙江 宁波 315100
海洋是涵盖超过70%地球表面的连续海水,发展先进的海洋生物光学监测手段对海洋生态系统的保护至关重要。文中综述了笔者团队在小型高光谱图谱仪与激光雷达系统搭建及其在海洋生物检测等应用上的部分近期工作。图谱仪方面介绍了不同空间扫描方式的高光谱图谱仪在透射、反射及荧光等不同工作模式下,对数种藻类、斑马鱼等海洋生物进行了图谱检测,并且基于图谱数据结合机器学习算法实现了微藻种类的精准分类和藻类生长周期的准确预测;在激光雷达方面详述了使用非弹性高光谱沙姆激光雷达系统在实验室和近岸实地环境进行了多次水生生物的测量实验,成功获取其荧光高光谱,证明了非弹性高光谱沙姆激光雷达系统在海洋生物监测应用中的巨大潜力。此外,笔者团队还搭建了一套四维凝视成像探测系统能实现高光谱分辨率(3 nm)、高空间分辨率、高深度精度(27.5 μm)的精准探测。
高光谱图谱仪 沙姆激光雷达系统 水母 棕囊藻 四维探测 hyperspectral imager Scheimpflug lidar system jelly fish phaeocystis 4D detection 
红外与激光工程
2021, 50(6): 20211033
作者单位
摘要
1 北京航空航天大学 仪器科学与光电工程学院 精密光机电一体化技术教育部重点实验室,北京 100191
2 中国测绘科学研究院,北京 100830
最新一代可见近红外(VNIR)和短波红外(SWIR)双通道星载高光谱成像仪,多采用视场分离器将VNIR和SWIR通道分离为多个子视场,同一时刻各子视场对地成像区域不同,在采用运动补偿技术提高图像信噪比时,各子视场对同一地物的观测角不同,导致图像间失配关系复杂,无法获取同一地物的VNIR-SWIR连续光谱。通过建立运动补偿下的严格成像几何模型,定量分析了双通道图像的畸变和失配规律,进而提出了各子视场分别几何定位再相位相关法配准的方案,并利用东天山区域运动补偿下星载双通道高光谱仿真数据进行验证。结果表明,传统的基于图像的配准方案精度为3.9像元,仍无法得到同一地物像元的VNIR-SWIR光谱曲线,文中方案配准精度提高到0.3像元,VNIR和SWIR重叠波段的反射率光谱重合度误差由41.5%降低到1.2%。
高光谱成像仪 运动补偿 失配分析 图像配准 重采样 hyperspectral imager motion compensation mismatch analysis image registration resampling 
红外与激光工程
2021, 50(3): 20211022
作者单位
摘要
1 河南农业大学信息与管理科学学院, 河南 郑州 450046
2 南京林业大学林学院, 江苏 南京 210042
3 中科星图股份有限公司, 北京 101399
4 山东科技大学测绘与空间信息学院, 山东 青岛 266590
高分五号(GF-5)卫星上荷载的可见短波红外高光谱相机(AHSI)能够同时获取330个谱段的光谱信息,对大气和陆地进行综合高光谱观测,能有效获取地物的精确信息。云的存在会对遥感影像造成污染,为了提高GF-5数据的利用率,本文结合AHSI的地物高光谱特性,研究多种下垫面背景下的云检测方法。对得到的1级产品,利用产品配套的定标系数以及光谱响应函数文件,得到各波段的大气顶层表观反射率数据。使用多种典型地物与云像元进行表观反射率的对比后发现,厚云与其他类型的像元在可见光波段具有显著差异。高光谱数据由于波段宽度窄,易受到噪声的影响,因此在进行厚云像元判定时,使用多个窄波段数据进行等效计算,得到对应的宽波段表观反射率,在此基础上使用简单的检测阈值可以将厚云筛选出来。之后使用卷云波段,筛选出潜在的薄云像元。高亮地表作为薄云检测的重点研究对象,检测时极易与薄云造成混淆,为了将薄云区域与高亮地表进行有效区分,统计不同波段之间表观反射率比值的变化,将薄云与易造成误判的高亮区域进行对比,确定最优判定波段与阈值。为了验证算法的精度,对多景AHSI影像进行目视解译,勾选出云像元区域作为基准数据。实验结果表明,本文所提方法的云检测总体精度可达91%以上,可以准确区分云与晴空区域,实现高精度的高光谱遥感影像云检测。
遥感 云检测 高光谱 表观反射率 高分五号 可见短波红外高光谱相机 
光学学报
2021, 41(9): 0928003
作者单位
摘要
中国科学院西安光学精密机械研究所,陕西 西安 710119
根据遥感领域高光谱成像对大幅宽、高分辨率需求,研制了一套适合航天LASIS高光谱成像应用的高分辨率、宽视场、高光谱、高可靠性的新型高速光谱成像仪电子学系统,它采用多片四通道并行处理ADC芯片进行模数转换,以V5系列FPGA为核心处理器,用高速SerDes芯片传输图像数据,成像测试及相关环境试验及可靠性测试,验证了设计的有效性。该设计为我国进入航天遥感领域领先行列提供了技术支撑,也为深入开展高分辨遥感提供了有益的借鉴。
高速CCD成像 成像电路 高光谱成像仪 干涉光谱成像 high-speed CCD imaging imaging circuit hyperspectral imager interference spectral imaging 
红外与激光工程
2020, 49(S1): 20200096
作者单位
摘要
1 国家光学仪器工程研究中心 浙江大学光及电磁波研究中心, 浙江 杭州 310058
2 浙江大学 宁波研究院, 浙江 宁波 315100
海洋是地球生态环境的重要一环, 但人类对海洋资源的勘探和开采容易对其造成严重破坏, 如油气开采过程造成的大面积溢油、污染和赤潮爆发等。高光谱成像技术可以同时获取图像信息与高分辨光谱信息, 在海洋原位探测上具有重大应用。文中综述了小型高光谱图谱仪与激光雷达及其在海洋应用上的部分近期工作。小型高光谱图谱仪结合荧光技术, 实现了溢油种类的分类和油膜厚度的估计。多模式高光谱海洋原位探测系统可以工作于普通反射或透射成像、望远成像、显微成像三种模式, 实现了海洋不同藻类及鱼类传染病载体孢囊的高光谱探测。高光谱技术结合激光雷达技术在溢油、赤潮等海洋污染物监测方面具有很大潜力。非弹性高光谱沙姆激光雷达系统通过油品的荧光光谱实现了海洋溢油油品的遥测鉴别。形貌沙姆激光雷达系统基于二维沙姆成像原理, 通过空气-水界面折射矫正, 成功的对人体、贝壳、珊瑚等进行了三维形貌重构, 近处恢复精度可达毫米级, 表面纹路清晰可见, 为海洋监测应用提供了新的技术支持。
高光谱图谱仪 沙姆激光雷达系统 沙姆成像原理 溢油 赤潮 海洋原位探测 三维形貌 hyperspectral imager Scheimpflug lidar system Scheimpflug imaging principle oil spill red tide marine in-situ detection 3D shape 
红外与激光工程
2020, 49(2): 0203001
孟庆鹏 1,2,3刘世界 1,2李春来 1王建宇 1,2,3,*
作者单位
摘要
1 中国科学院上海技术物理研究所 空间主动光电技术重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 上海科技大学, 上海 201210
由于热红外高光谱成像仪的狭缝宽度与成像波长在同一量级, 光在其内部传播时能量发生损失而不能全部被探测器像元接收, 因此基于几何光学的计算像元能量的方法已不再适用。为了探究能量损失情况, 采用时域有限差分方法计算了热红外高光谱成像仪中光聚焦入射狭缝前表面时狭缝后光强的分布, 并利用瑞利-索末菲矢量衍射理论得到了远场光强分布, 从而分析了不同狭缝宽度、狭缝厚度时能量的损失情况, 并搭建了实验装置进行验证。结果表明, 随着狭缝宽度增加, 能量损失逐步减小, 且能量主要是由于狭缝后方光波衍射导致能量不能全部进入后级成像镜头而损失, 在狭缝内部损失的能量很少。当狭缝宽度为几十微米量级时, 狭缝厚度对能量损失影响不大。
热红外高光谱成像仪 时域有限差分法 狭缝 矢量衍射理论 thermal infrared hyperspectral imager finite difference time domain method slit vector diffraction theory 
半导体光电
2019, 40(5): 714
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学, 北京 100049
针对海洋环境、海洋水色等领域的发展需要, 设计了一种适于机载的宽视场、大相对孔径的改进型Dyson光谱成像系统。根据海洋环境污染的光学特性, 利用不同目标反照率值估算目标信号的信噪比, 将高光谱成像仪的工作波段扩宽至紫外波段; 使用大像元尺寸的探测器、大相对孔径的成像系统来满足对海洋目标弱信号的识别, 同时通过降低积分时间来避免近海岸沙滩信号过强引起的探测器饱和。该光谱仪的工作波段为0.32~1.05 μm、相对孔径为f/1.8、像元尺寸为24 μm×24 μm, 通过加入弯月形的矫正镜避免了狭缝、探测器、滤光片和单透镜相互之间产生干涉。设计结果表明, 整个光学系统各波长的传递函数均大于0.83, 谱线弯曲和谱带弯曲均小于像元尺寸的4%。所设计成像光谱仪系统适用于海洋环境污染,尤其是海洋溢油污染的监测。
光学遥感 高光谱成像仪 信噪比估算 紫外波段 大像元尺寸 大相对孔径 remote sensing hyperspectral imager estimated calculation of SNR ultraviolet waveband large pixel size large relative aperture 
光学 精密工程
2017, 25(6): 1403
作者单位
摘要
1 中国科学院国家空间科学中心, 北京 100190
2 中国科学院大学, 北京 100049
为了满足大气微量成分高精度测量需求, 需要能准确描述星载高光谱大气微量成份探测仪的仪器狭缝函数。 针对高光谱大气微量成份探测仪视场大、 波段宽、 空间分辨率和光谱分辨率高等特点, 研制了狭缝函数测量仪。 介绍了狭缝函数测量仪的工作原理及基本结构, 并利用狭缝函数测量仪可同时实现高分辨率、 宽谱段测量的特点, 通过搭建定标装置, 对高光谱大气微量成份探测仪进行全视场的狭缝函数测试, 得出了仪器狭缝函数的数学表达式, 给出仪器狭缝函数的特性分布, 并对结果进行分析。 测试结果表明: 高光谱大气微量成份探测仪全视场光谱分辨率在0.423~0.597 nm之间, 其狭缝函数特性曲线近似满足高斯分布规律。 由于星载大视场成像光谱仪存在光谱弯曲现象, 从而导致边缘视场分辨能力略低于中心视场分辨能力。 狭缝函数测量仪是基于中阶梯衍射光栅设计, 可同时输出多条高分辨率谱线, 且分布均匀, 不仅可以测量高光谱成像光谱仪的仪器狭缝函数, 也可对星载高光谱仪器光谱定标, 为后续研究提供了参考依据和方法。Instrument
狭缝函数 高光谱成像光谱仪 大气微量气体 中阶梯衍射光栅 Slitfunction Hyperspectral imager Atmospheric trace gases Echelle grating 
光谱学与光谱分析
2017, 37(4): 1286

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!