杨宸 1,2范征锋 1,3刘杰 1,3张存波 1[ ... ]任国利 1
作者单位
摘要
1 北京应用物理与计算数学研究所, 北京 100088
2 中国工程物理研究院 研究生院, 北京 100088
3 北京大学 应用物理与技术研究中心, 北京 100871
系统地梳理了激光间接驱动点火靶内爆压缩的物理过程, 使用理论方法和一维流体力学模拟给出了靶丸内爆过程中的关键定标律公式。通过这些定标律公式获得了在给定黑腔辐射温度、飞行熵增因子、整形速度和烧蚀材料的条件下, 靶丸装量--半径参数空间的点火岛区域。研究了靶丸性能参数随辐射温度、飞行熵增因子等的变化规律: 当靶丸所处黑腔辐射温度升高时, 内爆的稳定性将变好; 设计上在靶丸装量不变的条件下, 靶丸半径需要减小。当靶丸的飞行熵增因子增大时, 内爆增益略微减小, 内爆稳定性变好; 但是点火阈值因子减小导致点火岛的区域变窄。当靶丸的整形速度增大时, 点火岛的区域略微变大, 内爆稳定性变化不显著; 设计上在靶丸装量不变的条件下, 需要增大靶丸半径, 这会导致靶丸壳层形状因子变大。当改变靶丸烧蚀材料, 提高质量烧蚀速率与烧蚀压时, 能量增益变大且稳定性增强; 设计上在靶丸装量不变的条件下, 需要减小靶丸半径。
激光聚变 间接驱动 内爆动力学 靶丸设计 定标律 laser fusion indirect-driven implosion dynamics capsule design scaling law 
强激光与粒子束
2019, 31(6): 062001
Author Affiliations
Abstract
1 Graduate School of Engineering, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya, 321-8585, Japan
2 CORE (Center for Optical Research and Education), Utsunomiya University, Yohtoh 7-1-2, Utsunomiya, 321-8585, Japan
3 Department of Physics, Technical University of Varna, Ulitska, Studentska 1, Varna, Bulgaria
In this review paper on heavy ion inertial fusion (HIF), the state-of-the-art scientific results are presented and discussed on the HIF physics, including physics of the heavy ion beam (HIB) transport in a fusion reactor, the HIBs-ion illumination on a direct-drive fuel target, the fuel target physics, the uniformity of the HIF target implosion, the smoothing mechanisms of the target implosion non-uniformity and the robust target implosion. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~30%-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50-70 to operate a HIF fusion reactor with the standard energy output of 1 GWof electricity. The HIF reactor operation frequency would be ~10-15 Hz or so. Several-MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a thousand times of the solid density. Then the DT fuel is ignited and burned. The HIB ion deposition range is defined by the HIB ions stopping length, which would be ~1 mm or so depending on the material. Therefore, a relatively large density-scale length appears in the fuel target material. One of the critical issues in inertial fusion would be a spherically uniform target compression, which would be degraded by a non-uniform implosion. The implosion non-uniformity would be introduced by the Rayleigh-Taylor (R-T) instability, and the large densitygradient- scale length helps to reduce the R-T growth rate. On the other hand, the large scale length of the HIB ions stopping range suggests that the temperature at the energy deposition layer in a HIF target does not reach a very-high temperature: normally about 300 eV or so is realized in the energy absorption region, and that a direct-drive target would be appropriate in HIF. In addition, the HIB accelerators are operated repetitively and stably. The precise control of the HIB axis manipulation is also realized in the HIF accelerator, and the HIB wobbling motion may give another tool to smooth the HIB illumination non-uniformity. The key issues in HIF physics are also discussed and presented in the paper.
Heavy ion inertial fusion Heavy ion inertial fusion Heavy ion fusion reactor system Heavy ion fusion reactor system Fusion fuel target implosion Fusion fuel target implosion Implosion dynamics Implosion dynamics Heavy ion beam transport Heavy ion beam transport Rayleigh- Taylor instability stabilization Rayleigh- Taylor instability stabilization Robust fusion system Robust fusion system 
Matter and Radiation at Extremes
2016, 1(2): 89

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!