作者单位
摘要
1 1.东华大学 材料科学与工程学院, 功能材料研究中心 纤维材料改性国家重点实验室, 上海 201620
2 2.赛迈科先进材料股份有限公司, 湖州 313100
随着锂离子电池的发展和钠离子电池的兴起, 硬碳材料作为一种新型负极材料, 受到了广泛关注。硬碳来源丰富, 价格便宜, 具有比锂离子电池石墨负极更高的储锂容量和优异的倍率性能, 并且是最有商业化潜质的钠离子电池负极材料。然而, 硬碳普遍存在电池首周库仑效率低的问题, 且对于硬碳的储锂/钠机制仍存在争论, 其比容量仍有较大的提升空间。近年来, 研究人员围绕硬碳负极材料的电化学机理展开了各种研究和模型假设, 针对硬碳负极存在的问题, 提出了各种解决策略。本文介绍了硬碳的基本结构和常用的制备方法, 并结合硬碳的优势, 梳理了硬碳在锂离子电池和钠离子电池中的应用情况, 重点介绍了其在快充、包覆等细分领域的应用进展, 并分别针对硬碳提升比容量和改善首周库仑效率的需求, 归纳了孔结构设计、元素掺杂、优化材料与电解液界面等不同改性策略。
负极材料 锂离子电池 钠离子电池 硬碳 综述 anode material lithium ion battery sodium ion battery hard carbon review 
无机材料学报
2023, 39(1): 32
作者单位
摘要
山东科技大学 材料科学与工程学院,青岛 266590
综合实验课程以“锂离子电池”这一研究和发展热点为主题,依托新能源专业,以工程实际问题为切入点,采用固相合成法制备了锂离子电池用钛酸锂负极材料,并进行表征和电化学性能测试。教学设计围绕以学生为中心、以成果为导向的理念,与新能源材料合成与制备、材料分析测试方法等课程相结合。教学内容涉及材料制备与表征、电极制备与电池组装、性能测试与结果分析。该教学实验的设计和实践有助于学生深化理论理解,掌握基本的锂离子电池制作流程和测试方法,进一步认识所学课程在新能源领域发展中的重要作用,提高专业认同感、自主思考能力和创新意识。
综合实验 教学设计 锂离子电池 钛酸锂 comprehensive experiment teaching design lithium-ion battery lithium titanate 
实验科学与技术
2023, 21(5): 70
作者单位
摘要
温州大学化学与材料工程学院, 温州 325035
过渡金属碳酸盐(MCO3, M=Mn、Fe、Co或Ni)具有高理论容量(约1 600 mA·h·g-1), 在锂离子电池新型负极材料研究领域受到广泛关注。但常规方法合成的微米尺度的过渡金属碳酸盐由于颗粒导电性差、离子电导率低、体积膨胀大, 导致电池性能不佳。本工作总结了提高过渡金属碳酸盐储锂性能的三种高效策略为纳米化与多级结构设计、阳离子取代和多功能材料复合, 揭示了过渡金属碳酸盐的内在反应机理, 提出了MCO3的结构组成理性设计策略, 对深入开发高比容量、优异倍率性能和长期循环稳定性的过渡金属碳酸盐负极具有一定的参考价值。
过渡金属碳酸盐 锂离子电池 提升性能策略 transition metal carbonate lithium ion battery performance enhancement strategies 
玻璃搪瓷与眼镜
2023, 51(6): 48
作者单位
摘要
贵州大学化学与化工学院,贵阳 550000
富锂锰基正极材料由于具有较高的理论比容量,被认为是下一代锂电池最有前途的正极材料之一。但在循环过程中存在比容量低、倍率性能差、衰减速度快等问题。基于此,本文采用水热法制备了多晶型MnO2材料,并利用湿化学研磨法结合热处理工艺对商业富锂锰基正极材料进行了表面包覆改性。通过循环伏安、恒流充放电及电化学阻抗谱对所得材料进行电化学性能测试,并通过包覆前后材料电化学性能的变化研究了多晶型MnO2对富锂锰基正极材料电化学性能的影响。结果表明,β-MnO2的电化学性能最佳,其初始比容量在0.1 C下达到292.2 mAh·g-1,在0.1~5.0 C的倍率下容量保持率为56.3%,在1 C下循环50次后容量保持率为81.6%。通过EIS测试得出β-MnO2的包覆改善了原样品电化学反应过程中的电化学动力学。
多晶型MnO2 形貌调控 表面包覆 富锂锰基正极材料 电化学性能 锂离子电池 polymorphic MnO2 morphology control surface coating lithium-rich manganese-based cathode material electrochemical performance lithium-ion battery 
硅酸盐通报
2023, 42(9): 3387
作者单位
摘要
南开大学 化学学院, 先进能源材料化学教育部重点实验室, 新能源转化与存储交叉科学中心, 天津 300071
2022年是X射线衍射(XRD)发现的110周年。XRD Rietveld精修作为材料结构分析的重要手段, 在建立材料“构-效”关系方面发挥着重要的作用。正极材料是锂离子电池的重要组成部分, 深入理解其晶体结构及原子分布规律有助于推动锂离子电池正极材料的发展。本文简要介绍了XRD Rietveld结构精修及其在锂离子电池正极材料中的应用, 围绕几类典型正极材料, 重点讨论了Rietveld结构精修在正极材料的合成、退化衰减及结构改性中的应用和研究进展。XRD Rietveld精修可以得到物相比例、晶胞参数、关键原子占比、原子坐标等结构信息, 对开发高性能锂离子电池正极材料具有重要的指导意义。最后, 本文展望了X射线衍射技术在锂电正极材料结构研究中的机遇与挑战。
X射线衍射 Rietveld精修 锂离子电池 正极材料 综述 X-ray diffraction Rietveld refinement lithium-ion battery cathode material review 
无机材料学报
2023, 38(6): 589
作者单位
摘要
1 国网浙江省电力有限公司温州供电公司, 浙江 温州,325000
2 中国电力科学研究院有限公司,北京 100192
3 国网浙江省电力有限公司,杭州,310063
以固态电解质构建的全固态锂离子电池具有极高的安全性及可靠性,是目前锂离子电池领域的研究热点,其中研发无机物-高分子复合固体电解质用于全固态锂离子电池具有重要意义。通过溶胶-凝胶法及球磨细化制备了纳米级Li7La3Zr2O12 (LLZO)粉末,进而采用溶液浇注法制备出以LLZO为活性填料,聚氧化乙烯(PEO)和聚偏氟乙烯(PVDF)共混的固态复合聚合物电解质。通过场发射扫描电子显微镜以及X射线衍射仪对材料的形貌、物相及电化学性能表征表明:添加质量分数为10%LLZO的LLZO/PEO/PVDF固态复合聚合物电解质具有高离子电导率(8.93×10-5 S/cm)以及稳定的电化学窗口(4.9 V)。添加LLZO之后的LiFePO4/Li全固态电池的倍率性能以及循环性能均得到提高,在60 ℃高温下,容量恢复率为99.4%,0.2 C循环100圈后容量保持率为84.1%。
锂镧锆氧 共混聚合物 固态复合聚合物电解质 全固态锂电池 lithium lanthanum zirconium oxygen blending polymer solid-state composite polymer electrolyte all-solid-state lithium-ion battery 
硅酸盐学报
2023, 51(7): 1756
作者单位
摘要
1 辽宁科技大学材料与冶金学院,辽宁 鞍山 114051
2 辽宁省化学助剂合成与分离重点实验室,营口理工学院,辽宁 营口 115014
基于一种创新的废旧锂离子电池回收再合成的绿色循环路线,以熔融LiCl-KCl作为熔盐介质,废旧锂电池正极材料热还原转型产物LiOH·H2O与Co2O3为原料,通过熔盐法合成了锂离子电池正极材料钴酸锂LiCoO2,进而制备纽扣电池用以资源的循环利用。主要研究钴酸锂合成的反应动力学及反应条件对产物钴酸锂LiCoO2的材料结构、形貌结构的影响;通过电化学分析手段对钴酸锂LiCoO2的电池性能进行测试表征。结果表明:运用Kissinger法计算合成过程中的3个吸热反应过程的活化能依次为34.212 00、168.539 25、221.261 81 kJ·mol-1;在750 ℃焙烧6 h,产物LiCoO2具有良好的六方晶格结构;在0.2 C倍率、测试电压范围在2.4~4.2 V的条件下对电池进行充放电及循环性能测试,得出在750 ℃焙烧6 h合成的LiCoO2制备出的实验电池,其首次充放电比容量分别为150 mA·h/g和147 mA·h/g,Coulombic效率为98%,循环充放电50次之后的放电比容量仍有129 mA·h/g;经过倍率循环后电池仍有较好的充放电性能。
锂离子电池 熔盐合成 钴酸锂 回收 lithium-ion battery molten salt synthesis lithium cobalt oxide recovery 
硅酸盐学报
2023, 51(7): 1680
作者单位
摘要
1 合肥工业大学化学与化工学院,合肥 230009
2 中盐安徽红四方新能源科技有限公司,合肥 231602
高比容量正极材料的研发对进一步提升锂离子电池的能量密度具有重要的意义。Li3V2O5正极材料的实际比容量较高,可达240 mA·h/g以上,近年来引起了人们的广泛关注。然而,由于锂离子传输动力学不足以及不可逆相变共同导致Li3V2O5具有充放电循环稳定性较差的问题,限制了其作为锂离子电池正极材料的应用。在前期研究基础上制备了Co3+掺杂Li3V2O5纳米棒材料,一方面通过形成一维结构避免充放电循环过程中的应力累积,另一方面通过形成键能更强的Co-O键提高材料结构的稳定性。此外,Co3+掺杂还扩大了晶格间距并提高了V4+的比例,最终使Li3V2O5正极材料的锂离子扩散系数和充放电循环稳定性获得显著改善。1% (摩尔分数)Co3+掺杂Li3V2O5样品(1%Co-LVO)在50 mA/g电流密度下的首次放电比容量达256.43 mA·h/g,循环100圈后容量保持率达到77.3%,与未掺杂样品相比提升了28%。与文献相比,1%Co-LVO样品的容量衰减率具有显著的优势(0.23%/圈),为高能量密度锂离子电池正极材料Li3V2O5的制备与性能调控提供了一定的参考。
钒酸锂 锂离子电池 阳离子无序 正极材料 lithium vanadate lithium-ion battery cation disordered cathode material 
硅酸盐学报
2023, 51(7): 1670
作者单位
摘要
浙江工业大学材料科学与工程学院,杭州 310014
金属锂被认为是高能量密度电池材料的“圣杯”,具有超高的理论容量和最低的氧化还原电位。但由于锂枝晶不可控生长、固体电解质界面膜(SEI膜)不稳定以及“死锂”累积等系列问题,限制了其商业化应用。氟化材料能有效稳定金属锂/电解液界面,均匀锂离子通量和抑制锂枝晶生长,是金属锂二次电池领域的研究重点。本文综述了近年来氟化无机材料在金属锂沉积骨架、人工SEI保护层、电解液添加剂以及固态电解质等方面的研究进展,阐述了氟化无机材料稳定金属锂负极循环的内在机理,并展望了其未来的发展前景。
金属锂负极 锂枝晶 固体电解质界面膜 氟化 锂离子电池 lithium metal anode lithium dendrites solid-electrolyte interface fluorination lithium-ion battery 
硅酸盐学报
2023, 51(9): 2322
作者单位
摘要
1 中国科学技术大学化学与材料科学学院,合肥 230026
2 合肥国家微尺度物理科学研究中心,合肥 230026
石墨基锂离子电池负极有限的理论容量和较慢的充电速度已不能满足需求,开发更高容量且兼具快充能力的锂离子电池负极材料成为研究重点。利用蔗糖与浓硫酸脱水反应得到初始硬碳(R-HC),并在NH3/Ar气氛中退火,得到了氮掺杂的多孔硬碳(N-HC)。N-HC具有丰富的超微孔结构(孔径< 0.75 nm)和较大的层间距(约为0.39 nm),使得锂离子在N-HC中的扩散系数能够达到9.0×10?傆b8 cm2·s?傆b1。在0.27 C 和2.7 C (1 C=370 mA·g?傆b1)条件下,N-HC负极经过680和1 400次循环后容量分别为704.0 mA·h·g?傆b1和269.2 mA·h·g?傆b1。尽管其首次Coulomb效率还有待提高,N-HC负极已初步达到锂离子电池的快充性能要求。
锂离子电池 快充 硬碳 超微孔 高容量 lithium-ion battery fast-charging hard carbon ultra-micropores high capacity 
硅酸盐学报
2023, 51(9): 2188

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!