作者单位
摘要
清华大学医学院生物医学工程系,北京 100084
核酸检测方法可快速鉴定特异基因指标,但其广泛应用受限于多种仪器设备串行使用以及对操作人员的高专业技术要求。本团队开发了一套注射式微流控芯片全集成核酸分析系统,该系统主要包含两大模块,分别是可以为不同类型临床样本提供多种核酸提取方法的全自动注射式核酸提取模块,以及基于微流控芯片的微纳体系多指标联合并行检测等温扩增核酸检测模块。这两大模块既可以单独发挥各自的功能,也可以组合成全集成注射式微流控芯片核酸分析系统,形成全集成自动化、微纳反应体系、快速、多指标联合并行检测的核酸检测分析平台。采用本团队开发的注射式微流控芯片全集成核酸分析系统,分别对热带念珠菌标准株培养菌液和64例外阴阴道念珠菌感染疾病的临床拭子样本进行检测。结果显示:本系统对菌液的最低检测限为3.95×102 CFU/mL,而且样品制备更方便快捷,仅需1次加样操作,核酸提取时间为10 min;64例临床样本检测效果与金标准培养法相比,卡方检验为1,Kappa值为0.950,说明两种方法无显著差异,且一致性很高。本团队开发的注射式微流控芯片全集成核酸分析系统,可以为临床多指标微纳体系核酸快速检测提供一个可靠的平台,为临床医疗应用提供精准快检技术与便捷分析仪器支撑。
医用光学 注射式 微流控芯片 全集成核酸分析系统 精准医疗应用 
中国激光
2024, 51(9): 0907013
陈志浩 1,2,3赵南京 2,3,*殷高方 2,3马明俊 1,2,3[ ... ]丁志超 1,2,3
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室,安徽 合肥 230031
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
藻细胞显微图像快速自动获取具有重要的应用价值。针对微流控-显微成像技术中样品进样效率与细胞成像质量问题,研究了基于藻细胞通过荧光检测窗口持续时间的样品平均流速检测方法,并提出基于体积流量调节的微流控自动进样分段控制方法。结果表明,进样速度在10~30 μL/min范围内,样品平均流速检测误差小于5%;分段控制实现了藻细胞显微图像的高质量自动获取,与显微镜检成像质量基本一致,且样品进样速度提升68%以上。研究结果为藻细胞显微图像高效自动获取提供了有效实用方法。
藻细胞 微流控-显微成像 流速检测 分段控制 自动进样 algae cells microfluidic-microscopic imaging flow rate detection segmented control automatic sampling 
大气与环境光学学报
2024, 19(1): 38
作者单位
摘要
1 郑州大学物理学院,河南 郑州 450001
2 郑州大学附属肿瘤医院,河南省肿瘤医院,河南 郑州 450003
高速光流控成像是融合了高速光学成像和微流控的新兴交叉技术,能够对高速复杂流体环境中的生物体进行高分辨率、高通量和多信息维度的成像和定量检测分析,在生物能源、食品科学、药物筛选、疾病诊断等领域展现出卓越的应用前景。对高速光流控成像的基本原理、关键技术和前沿进展进行综述,并对该技术未来的发展趋势和面临的挑战进行展望。
成像系统 高速成像 光流控 微流控芯片 
激光与光电子学进展
2024, 61(2): 0211015
作者单位
摘要
1 深圳技术大学未来技术学院先进制造与未来工业中心,广东 深圳 518118
2 哈尔滨工程大学物理与光电工程学院纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001
3 桂林电子科技大学光电工程学院光子学研究中心,广西 桂林 541004
随着微流控技术的日趋成熟,将微流控芯片技术和光微流方法在微结构光纤中进行交叉融合,已经逐渐形成了一个新的发展方向。简要综述了这一技术是如何从初期的利用微结构光纤的特殊结构,进行简单的功能集成,拓展到如今基于特殊需求进行光纤的功能设计的新阶段,以实现在微结构光纤内部构造微流控感测系统的目的。该方向的发展,不仅促进了光波导与微流物质检测技术相结合,还为实现不同检测原理在微结构光纤内的高灵敏度光纤微流传感器技术开辟了新方法与新途径。
微流控 光微流 光纤传感器 光微流传感器 
激光与光电子学进展
2024, 61(1): 0106004
作者单位
摘要
1 上海理工大学 光电信息与计算机学院, 上海 200093
2 上海理工大学 上海市现代光学系统重点实验室, 上海 200093
数字PCR(dPCR)技术作为传统PCR技术的更新迭代, 有着绝对定量的特点, 在新冠病毒核酸序列检测、癌细胞探测等生物学领域有着巨大的潜力。现有的dPCR荧光检测系统在检测通量、检测速度以及成本之间难以做出合理的权衡。由于成像视野小、需多次图像拼接极大影响了dPCR荧光检测系统效率和时间。文章构建了一套采用大视场荧光显微设计的多通道dPCR检测系统实验平台, 依托该实验平台, 运用Zemax软件优化结构, 改进显微成像物镜设计, 能够实现直径18mm的全视场范围FAM、HEX、ROX三种荧光通道分辨率在6μm的多通道成像。采用随机霍夫变换算法(RHT)图像处理分析方法, 对常规均匀“圆孔”和新型“雪花”、“树枝”等非均匀结构的微流控荧光芯片, 均能实现高效检测, 得到清晰、稳定的荧光图像。
应用光学 数字PCR 光学设计 荧光显微镜 微流控芯片 applied optics digital pcr technology optical design fluorescence microscope microfluidic chip 
光学技术
2023, 49(4): 502
Author Affiliations
Abstract
1 Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
2 Nanophotonics Research Centre, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
Cell identification and sorting have been hot topics recently. However, most conventional approaches can only predict the category of a single target, and lack the ability to perform multitarget tasks to provide coordinate information of the targets. This limits the development of high-throughput cell screening technologies. Fortunately, artificial intelligence (AI) systems based on deep-learning algorithms provide the possibility to extract hidden features of cells from original image information. Here, we demonstrate an AI-assisted multitarget processing system for cell identification and sorting. With this system, each target cell can be swiftly and accurately identified in a mixture by extracting cell morphological features, whereafter accurate cell sorting is achieved through noninvasive manipulation by optical tweezers. The AI-assisted model shows promise in guiding the precise manipulation and intelligent detection of high-flux cells, thereby realizing semi-automatic cell research.
AI algorithm cell identification and sorting optical tweezers microfluidic chip 
Chinese Optics Letters
2023, 21(11): 110009
占思进 1,*游立 1刘飞 1王诗瀚 2,3[ ... ]王先炜 4
作者单位
摘要
1 贵州大学化学与化工学院, 贵阳 550025
2 中低品位磷矿及共伴生资源高效利用国家重点实验室, 贵阳 550025
3 瓮福(集团)有限责任公司, 贵阳 550025
4 贵阳开磷化肥有限公司, 贵阳 550025
γ-CuI较宽的能带空隙及较高的离子电导率等特点, 使其在光能利用和超快闪烁材料领域有着广泛的应用。γ-CuI 的形貌往往对其结构性质有重要的影响, 精准地调控其形貌有很大的意义。因此, 本文采用微反应法, 通过控制不同NH3·H2O用量、Cu源、管内反应停留时间及合成温度等因素, 结合SEM、XRD和FT-IR等测试手段, 对不同合成条件下制备得到的γ-CuI的晶型与形貌进行了研究。并对传统液相沉淀法和微反应法制备的γ-CuI进行了比较。结果表明, 当NH3·H2O使用量(CNH3·H2O/CN2H4)为0.4、管内停留时间为10 s、反应温度为20 ℃的条件下达到90.5%的最高产率。其中, NH3·H2O的使用量对形貌的影响最大, 当NH3·H2O的使用量为0.4时, 合成了形貌均一的棒状γ-CuI。对比不同的铜源, 除Cu(CH3COO)2·H2O制备得到棒状的γ-CuI, 其余Cu源均主要生成颗粒状γ-CuI。增加管内时间则有助于棒状γ-CuI的形成, 但进一步增长时间会导致样品在管内损失。此外, 过高的反应温度会导致棒状γ-CuI逐渐向颗粒状γ-CuI转化。
微反应器 微流控法 微筛孔板 形貌调控 γ-CuI γ-CuI N2H4·H2O N2H4·H2O microreactor microfluidic method microporous sieve plate morphological control 
人工晶体学报
2023, 52(10): 1887
作者单位
摘要
1 宁波大学高等技术研究院,浙江 宁波 315211
2 浙江大学硅材料国家重点实验室,浙江 杭州 310027
3 浙江大学现代光学仪器国家重点实验室,浙江 杭州 310027
随着通信、医学、化学、分析等领域的不断发展,微全分析系统、芯片实验室、微机电系统、高精度微纳器件开始出现并得到应用,这些系统或结构部分通过飞秒激光在透明材料内部制备三维微纳连通结构来实现。为此,本文介绍了飞秒激光制备透明材料内部三维微纳结构的主要技术,列举了三维微纳连通结构的主要应用,分析了当前飞秒激光制备三维微纳连通结构存在的问题,并对该技术未来发展趋势进行了展望。
飞秒激光 微流控 三维结构 透明材料 减材制造 
激光与光电子学进展
2023, 60(21): 2100001
作者单位
摘要
1 河北工业大学 机械工程学院,天津 300130
2 天津中德应用技术大学 能源工程学院,天津 300350
生鲜牛乳中的体细胞数量是判断奶牛是否患有乳房炎的重要依据。针对牛乳在取样过程中细胞贴壁沉降等原因造成体细胞分布不均匀,从而导致体细胞计数不具有代表性的问题,文中提出了一种基于九宫格型微流控芯片使体细胞分布均匀并提升计数准确率的方法。首先在Comsol仿真的基础上制备了九宫格型微流控芯片,提高了细胞分布的均匀度。其次研制了集染色、搅拌于一体的负压进样系统,保证在进样过程中持续保持体细胞分布的均匀度和不受空气的污染。并配合芯片研制了微型显微成像系统,对芯片的九个观测腔拍摄图像。最后通过图像处理的方法对体细胞进行计数,并判断奶牛乳房的健康状况。实验结果表明,每组九张图像体细胞数量的标准差系数均小于等于1.61%,系统计数准确率可达到99.23%。该研究方法为奶牛乳房炎的检测与预防奠定了基础。
奶牛乳房炎 微流控芯片 微型显微镜系统 图像处理 细胞计数 标准差系数 dairy mastitis microfluidic chip micro microscope system image processing cell counting standard deviation coefficient 
红外与激光工程
2023, 52(8): 20230265
Author Affiliations
Abstract
1 Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
2 Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
3 Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
4 Institute of Photonic Chips, Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
5 Ruidge Biotech Co. Ltd., No. 888, Huanhu West 2nd Road, Lin-Gang Special Area, China (Shanghai) Pilot Free Trade Zone, Shanghai 200131, P. R. China
6 Shanghai Hengxin BioTechnology, Ltd., 1688 North Guo Quan Rd, Bldg A8, Rm 801, Shanghai 200438, P. R. China
7 Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
8 Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, Shanghai 200433, P. R. China
Microfluidic systems have been widely utilized in high-throughput biology analysis, but the difficulties in liquid manipulation and cell cultivation limit its application. This work has developed a new digital microfluidic (DMF) system for on-demand droplet control. By adopting an extending-depth-of-field (EDoF) phase modulator to the optical system, the entire depth of the microfluidic channel can be covered in one image without any refocusing process, ensuring that 95% of the particles in the droplet are captured within three shots together with shaking processes. With this system, suspension droplets are generated and droplets containing only one yeast cell can be recognized, then each single cell is cultured in the array of the chip. By observing their growth in cell numbers and the green fluorescence protein (GFP) production via fluorescence imaging, the single cell with the highest production can be identified. The results have proved the heterogeneity of yeast cells, and showed that the combined system can be applied for rapid single-cell sorting, cultivation, and analysis.
Single-cell analysis digital microfluidic (DMF) extending-depth-of-field system 
Journal of Innovative Optical Health Sciences
2023, 16(3): 2244006

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!