张一凡 1,2李辉 1,2杨光 2,*
作者单位
摘要
1 中国科学技术大学生物医学工程学院,江苏 苏州 215163
2 中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室,江苏 苏州 215163
光片显微镜由于具有强大的光学层切能力、较快的成像速度和较低的光损伤,成为三维成像的重要工具。光片显微镜通常利用两个垂直放置的物镜分别进行照明和成像,这带来了对样品的空间限制并禁用了高数值孔径的成像物镜。以倾斜平面照明和微镜微器件反射技术为代表的单物镜光片显微技术突破上述限制,展示出在高分辨率和体积高速成像方面的优势,并且可与超分辨显微术等多种技术结合,在近年来取得了巨大发展。介绍单物镜光片显微成像技术的原理、关键性能的提升和其在生物医学的应用。
生物光学成像 光片显微镜 三维成像 荧光显微镜 
激光与光电子学进展
2024, 61(6): 0618014
Author Affiliations
Abstract
1 Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
2 Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150081, China
3 Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
4 Institute of Optical Measurement and Intellectualization, Harbin Institute of Technology, Harbin 150080, China
5 Beijing Institute of Collaborative Innovation, Beijing 100094, China
6 State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing 100871, China
A critical function of flow cytometry is to count the concentration of blood cells, which helps in the diagnosis of certain diseases. However, the bulky nature of commercial flow cytometers makes such tests only available in hospitals or laboratories, hindering the spread of point-of-care testing (POCT), especially in underdeveloped areas. Here, we propose a smart Palm-size Optofluidic Hematology Analyzer based on a miniature fluorescence microscope and a microfluidic platform to lighten the device to improve its portability. This gadget has a dimension of 35 × 30 × 80 mm and a mass of 39 g, less than 5% of the weight of commercially available flow cytometers. Additionally, automatic leukocyte concentration detection has been realized through the integration of image processing and leukocyte counting algorithms. We compared the leukocyte concentration measurement between our approach and a hemocytometer using the Passing-Bablok analysis and achieved a correlation coefficient of 0.979. Through Bland-Altman analysis, we obtained the relationship between their differences and mean measurement values and established 95% limits of agreement, ranging from ?0.93×103 to 0.94×103 cells/μL. We anticipate that this device can be used widely for monitoring and treating diseases such as HIV and tumors beyond hospitals.
hematology analyzer miniature fluorescence microscope microfluidics leukocyte concentration 
Opto-Electronic Science
2023, 2(12): 230018
作者单位
摘要
1 上海理工大学 光电信息与计算机学院, 上海 200093
2 上海理工大学 上海市现代光学系统重点实验室, 上海 200093
数字PCR(dPCR)技术作为传统PCR技术的更新迭代, 有着绝对定量的特点, 在新冠病毒核酸序列检测、癌细胞探测等生物学领域有着巨大的潜力。现有的dPCR荧光检测系统在检测通量、检测速度以及成本之间难以做出合理的权衡。由于成像视野小、需多次图像拼接极大影响了dPCR荧光检测系统效率和时间。文章构建了一套采用大视场荧光显微设计的多通道dPCR检测系统实验平台, 依托该实验平台, 运用Zemax软件优化结构, 改进显微成像物镜设计, 能够实现直径18mm的全视场范围FAM、HEX、ROX三种荧光通道分辨率在6μm的多通道成像。采用随机霍夫变换算法(RHT)图像处理分析方法, 对常规均匀“圆孔”和新型“雪花”、“树枝”等非均匀结构的微流控荧光芯片, 均能实现高效检测, 得到清晰、稳定的荧光图像。
应用光学 数字PCR 光学设计 荧光显微镜 微流控芯片 applied optics digital pcr technology optical design fluorescence microscope microfluidic chip 
光学技术
2023, 49(4): 502
付强 1,*张智淼 1,2赵尚男 1,2刘洋 1,2董洋 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
微型头戴式单光子荧光显微成像技术是近些年出现的用于神经科学研究的一种突破性方法,可以对自由移动活体动物的神经活动进行实时成像,提供了一种前所未有的方式来访问神经信号,增强了对大脑如何工作的理解。在脑科学研究需求的推动下,目前已经出现了许多种类型的微型头戴式单光子荧光显微镜,如高分辨率成像、无线记录、三维成像、双区域成像和双色成像等。为了更加全面地了解和认识这种新兴的光学神经成像技术,本文按成像视场进行分类,对目前报道的不同类型微型头戴式单光子荧光显微镜所具有的特点进行了介绍,重点讨论了其所采用的光学系统方案和光学性能参数,分析对比了不同方案的优缺点,以及未来的改进方向,以便为脑科学研究人员的实际应用提供参考。
微型单光子荧光显微镜 神经信号 脑科学 光学系统 miniature single-photon fluorescence microscope neural signals brain science optical system 
中国光学
2023, 16(5): 1010
余永建 1王越 2,*李寰 2周文超 2[ ... ]吴一辉 1,2,**
作者单位
摘要
1 温州医科大学眼视光学院,浙江 温州 325035
2 中国科学院长春光学精密机械与物理研究所光学系统先进制造技术重点实验室,吉林 长春 130033
3 中国科学院大学,北京 100049
针对高通量荧光显微成像中高密度、低信噪比、亚衍射极限荧光斑点的自动化精准检测和定位问题,基于UNet提出一种轻量级神经网络方法。该方法采用挤压和激发通道层注意力机制和残差模块优化特征信息,构建密度图和偏移量多输出架构,直接执行检测和亚像素定位。在公开数据集和模拟数据集进行实验,所提方法对低信噪比和高密度的荧光点检测优于当前算法,尤其对于达到衍射极限的高密度荧光点,有很好的检测性能,比如在128×128像素具有1200个荧光点并且大部分点达到衍射极限的图像下。所提算法对斑点的识别精度F1分数超过97.6%,定位误差为0.115 pixel,相比最新deepBlink方法,F1提升16.2个百分点并且定位误差减小0.63 pixel。
荧光显微镜 数字图像处理 模式识别 神经网络 医学和生物成像 
激光与光电子学进展
2023, 60(14): 1412004
王冠晨 1,2陈同生 1,2,3,*
作者单位
摘要
1 华南师范大学生物光子学研究院,教育部激光生命科学重点实验室,广东 广州 510631
2 华南师范大学生物光子学研究院,广东省激光生命科学重点实验室,广东 广州 510631
3 师大瑞利光电科技(清远)有限公司,广东 清远 511517
亚细胞器是细胞的重要组成单位,其形态结构与动力学特性直接反映了细胞的生理状态。21世纪初新兴的结构光照明显微技术、受激发射损耗显微技术和单分子定位成像技术等超分辨显微成像技术,巧妙地绕过了光学衍射极限对成像分辨率的限制,目前已被广泛应用于活细胞亚细胞器精细结构的观察及其动力学过程的监测上。本文首先介绍了上述三种超分辨显微成像技术的基本原理和特点,然后介绍了活细胞中细胞核、细胞骨架、线粒体、内质网等亚细胞器的超分辨精细结构和动力学特性,最后讨论了亚细胞器超分辨精细结构成像与机器学习、图像处理相结合的发展潜力。
生物光学 超分辨显微术 荧光显微镜 亚细胞器精细结构 机器学习 
中国激光
2022, 49(20): 2007203
高璐 1,2翟士贤 1,2孙晗 1,2陈同生 1,2,*
作者单位
摘要
1 华南师范大学生物光子学研究院教育部激光生命科学重点实验室,广东 广州 510631
2 华南师范大学生物光子学研究院广东省激光生命科学重点实验室,广东 广州 510631
QuanTi-FRET是一种通过对多种荧光共振能量转移(FRET)标准质粒样本进行多次FRET成像来测量FRET成像系统敏化淬灭转化因子(G)和供受体通道激发效率校正因子(β)的方法。本课题组发展了一种基于一次成像测量系统校正因子Gβ的智能型QuanTi-FRET方法——AutoQT-FRET方法。AutoQT-FRET方法包括如下4个步骤:1)将分别转染了不同FRET标准串联质粒(C5V、C17V、C32V和CTV)的细胞合并到一个细胞培养皿中培养,对该皿细胞样本进行三通道FRET成像;2)对三通道图像进行区域划分,并根据不同种类的FRET标准质粒对各区域进行归类;3)对归类成功的区域逐像素绘制三维空间散点图,以确定各个FRET标准质粒的标准线;4)使用确定好的各质粒标准线对整个视野内的细胞区域进行质粒分类与系统校正因子Gβ的测量。该方法大幅简化了系统校正因子的测量过程,缩短了测量时间。本文比较了AutoQT-FRET方法与其他方法测量系统校正因子的优劣,实验结果表明:AutoQT-FRET方法操作简单,而且测量稳定性与准确度都有所提高。
生物光学 荧光 共振 能量转移 系统校正 荧光显微镜 
中国激光
2022, 49(5): 0507203
作者单位
摘要
1 复旦大学工程与应用技术研究院, 上海 200433
2 中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163
设计了一种基于线扫描成像(LSI)的光片荧光显微镜(LSFM),旨在通过抑制样本散射达到提高成像质量的目的。该显微镜将数字扫描光片荧光显微镜(DSLM)与LSI两种方法结合,以前者为基础,在探测光路上增加了一个用于解扫描的扫描振镜。在控制过程中,将照明光路的扫描振镜与解扫描振镜同步,使得均匀运动的图像在相机前固定于同一位置,从而实现了LSI。在系统中,为了便于与传统方法对比,线阵探测器通过面阵相机模拟实现。另外,与常规的LSFM相比,改进后的系统,在高散射荧光微球样品和斑马鱼心脏样品的成像实验中,更有效地抑制了样本散射。因此,验证该方法具有可行性。
显微 光片荧光显微镜 样本散射 线扫描成像 斑马鱼 
光学学报
2021, 41(20): 2018001
作者单位
摘要
哈尔滨工业大学仪器科学与工程学院, 现代显微仪器研究所, 黑龙江 哈尔滨150080
近年来,荧光显微成像技术由于良好的特异性、高的对比度和信噪比等性能优势,被广泛应用于生物物理学、神经科学、细胞学、分子生物学等生命科学研究的各个领域。然而,传统的荧光显微镜仍然存在分辨率、成像速度、成像视场、光毒性和光漂白等的相互限制,使其在亚细胞结构观测、活体生物超精密成像和分子结构研究领域的应用受到了极大阻碍。由于传统荧光显微镜的局限性,研究人员将目光投向了由数据驱动的深度学习方法。基于深度学习的显微镜的出现,丰富了现有的光学显微成像技术,大数据量的训练突破了传统光学显微镜所能够达到的功能和性能的疆界。本文聚焦基于深度学习的荧光显微成像技术,首先对深度学习的基本原理以及发展过程进行简要概述,随后针对深度学习在荧光显微成像领域近年来的国内外最新成果进行总结,之后通过与传统显微成像系统进行对比,阐述了深度学习在解决荧光显微成像问题上的优越性,最后对深度学习在显微成像技术上的应用前景进行了展望。
显微 深度学习 荧光显微镜 超分辨 光学成像 
激光与光电子学进展
2021, 58(18): 1811007
作者单位
摘要
1 中国科学院上海高等研究院基础交叉研究中心, 上海 201210
2 中国科学院大学微电子学院, 北京 100049
超分辨荧光显微技术一直是研究热点,各种超分辨荧光成像技术的出现打破了光学衍射极限,将空间分辨率提高到纳米尺度。但随着时间、空间分辨率要求的不断提高,目前超分辨荧光显微技术仍然面临着空间分辨率、时间分辨率和视场存在三角制约关系及探测灵敏度较低的问题。随着近年来基于量子关联的新型成像机制的发展,基于荧光量子特性与量子关联成像的超分辨荧光显微镜应运而生,新成像模式及新物理量的引入不仅增加了信息量也提高了图像信息获取的效率,为超分辨荧光显微技术的研究提供了新思路。介绍了目前超分辨荧光显微镜的技术原理、优缺点与面临的主要技术问题,以及基于量子关联的新型超分辨荧光显微镜,并探讨了未来超分辨荧光显微镜的发展方向,以期为该领域的科学研究提供参考。
成像系统 荧光显微镜 超分辨显微镜 量子关联 探测灵敏度 时间分辨率 
激光与光电子学进展
2021, 58(10): 1011012

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!