Author Affiliations
Abstract
Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
All-fiber few-mode erbium-doped fiber amplifiers (FM-EDFAs) with isolation and wavelength division multiplexers (IWDMs) have been developed to enable flexible pumping in different directions. The FM-EDFA can achieve >30 dB modal gain with <0.3 dB differential modal gain (DMG). We experimentally simulate the DMG performance of a cascade FM-EDFA system using the equivalent spectrum method. The overall DMG reaches 1.84 dB after 10-stage amplification. We also build a recirculating loop to simulate the system, and the developed FM-EDFA can support transmission up to 3270 km within a 2 dB overall DMG by optimizing the few-mode fiber length in the loop.
mode division multiplexing few-mode erbium-doped fiber amplifier gain equalization 
Chinese Optics Letters
2024, 22(4): 041401
Author Affiliations
Abstract
Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing (MDM). However, there are challenges in realizing mode exchange with low insert loss, low mode crosstalk, and high integration. Here, we designed and fabricated a mode exchange device based on multiplane light conversion (MPLC), which supports the transmission of LP01, LP11a, LP11b, and LP21 modes in the C-band and L-band. The simulated exchanged mode purities are greater than 85%. The phase masks were fabricated on a silicon substrate to facilitate the integration with optical systems, with an insert loss of less than 2.2 dB and mode crosstalk below -21 dB due primarily to machining inaccuracies and alignment errors. We carried out an optical communication experiment with 10 Gbit/s OOK and QPSK data transmission at the wavelength of 1550 nm and obtained excellent performance with the device. It paves the way for flexible data exchange as a building block in MDM optical communication networks.
mode exchange mode-division multiplexing multiplane light conversion 
Chinese Optics Letters
2024, 22(3): 030602
作者单位
摘要
1 北京邮电大学电子工程学院,信息光子学与光通信国家重点实验室,天地互联与融合北京市重点实验室,北京 100876
2 北京安科慧生科技有限公司,北京 101102
针对模分复用系统中由于模式耦合引入的信道串扰(XT)的问题,提出一种基于信号相关峰提取的XT相关比测量方法,并将XT相关系数应用于多进多出恒模盲均衡算法(CPR-MIMO-CMA)中以提升信道均衡效果。搭建了少模光纤传输的实验平台,利用CPR-MIMO-CMA对接收端数据进行处理,研究结果表明,在满足前向纠错(FEC)为3.8×10-3的门限下,所提出的CPR-MIMO-CMA在LP01、LP11、LP21三模信道中比传统CMA分别具有1.3 dB、0.9 dB、1.0 dB的性能增益,并且3个模式下的平均收敛时间减少约50%。
光通信 模分复用 模间串扰 信号相关峰 模式均衡 
光学学报
2024, 44(5): 0506005
作者单位
摘要
电子科技大学光电科学与工程学院,四川 成都 611731
提出了一种基于级联非对称Y分支的紧凑、宽带、高效的LP01-LP11a模式转换器。制作的聚合物波导模式转换器具有1.5 mm×14.0 μm的紧凑尺寸,对于C+L波段的x偏振和y偏振光,其模式转换效率大于98%,串扰小于-17.5 dB,插入损耗低于5.8 dB。所提出的模式转换器可以应用在宽带模分复用传输系统中。
光纤光学 光学器件 模式转换器 模分复用 聚合物波导 集成光学 非对称Y分支 
中国激光
2024, 51(6): 0606003
作者单位
摘要
上海大学通信与信息工程学院特种光纤与光接入网重点实验室,特种光纤与先进通信国际合作联合实验室,上海 200444
为了利用模分复用(MDM)和超奈奎斯特(FTN)传输技术提高无源光网络(PON)的传输容量和频谱效率,同时也为了保证系统具有良好的误码率性能,本文提出了基于矩阵分解预编码和MIMO预均衡器的联合损伤补偿方法,用于消除超奈奎斯特模分复用无源光网络(FTN-MDM-PON)中存在的MDM信道损伤和FTN传输损伤。对于矩阵分解预编码技术,本文采用奇异值分解(SVD)预编码、带功率预分配的奇异值分解(SVD PA)预编码和Cholesky分解(Chol)预编码方式,分别将它们与MIMO预均衡器结合后对比三种联合方案降低FTN-MDM-PON系统误码率的效果。仿真实验结果表明:采用SVD PA预编码、Chol预编码与MIMO预均衡器结合的联合损伤补偿方法时,FTN-MDM-PON系统中的4个线偏振(LP)模式的FTN信号经过5 km少模光纤(FMF)传输后,接收端误码率能够低于7%硬判决-前向纠错(HD-FEC)门限3.8×10-3。其中,Chol预编码与MIMO预均衡器结合的联合补偿方案降低误码率的效果最优,相比于表现较优的SVD PA预编码结合MIMO预均衡器方案,接收光灵敏度提升了1 dB~3 dB。
光通信 无源光网络 模分复用 多输入多输出 超奈奎斯特 预编码 预均衡 
中国激光
2024, 51(5): 0506002
作者单位
摘要
复旦大学信息科学与工程学院,上海 200433
提出了一种基于神经网络的多输入多输出(MIMO)均衡器,并在大容量模分-波分复用通信系统中进行了实验验证。该系统基于6模掺铒光纤放大器实现了16通道波分复用双极化48 Gbaud 16阶正交振幅调制(16QAM),在LP01、LP02、LP11a、LP11b、LP21a、LP21b六种模式上传输了100 km少模光纤(FMF)。为降低非线性的影响,在接收端数字信号处理中,采用基于多标签技术的MIMO神经网络均衡器,能够显著提升系统性能。实验结果表明,经100 km的FMF传输,MIMO神经网络均衡器的强大性能使得系统的比特误码率能满足15% 软判决前项纠错阈值要求。
光纤光学 光纤通信 模分复用 波分复用 神经网络均衡 
光学学报
2024, 44(3): 0306003
Author Affiliations
Abstract
1 School of Information Science and Technology, Fudan University, Shanghai 200433, China
2 Changfei Optical Fiber and Cable Joint Stock Limited Company, Wuhan 430073, China
3 Nanjing University of Information Science & Technology, Nanjing 210000, China
We experimentally transmit eight wavelength-division-multiplexing (WDM) channels, 16 quadratic-amplitude-modulation (QAM) signals at 32-GBaud, over 1000 km few mode fiber (FMF). In this experiment, we use WDM, mode division multiplexing, and polarization multiplexing for signal transmission. Through the multiple-input–multiple-output (MIMO) equalization algorithms, we achieve the total line transmission rate of 4.096 Tbit/s. The results prove that the bit error rates (BERs) for the 16QAM signals after 1000 km FMF transmission are below the soft-decision forward-error-correction (SD-FEC) threshold of 2.4×10-2, and the net rate reaches 3.413 Tbit/s. Our proposed system provides a reference for the future development of high-capacity communication.
optical fiber communication mode division multiplexing few-mode fiber multiple-input–multiple-output high-capacity transmission long-distance transmission 
Chinese Optics Letters
2024, 22(1): 010602
作者单位
摘要
1 廊坊师范学院电子信息工程学院, 河北廊坊 065000
2 北华航天工业学院电子与控制工程学院, 河北廊坊 065000
太赫兹通信兼具微波通信和光波通信的优势, 是解决通信容量紧缺难题的最有效技术手段之一。针对太赫兹波段吸收损耗严重及抗外在扰动差, 难以支持长距传输问题, 设计了一种基于环形光子晶体光纤(PCF)结构的新型太赫兹光纤。以现有常见材料作为光纤基底材质, 通过创新光纤结构中空气孔排布方式, 抵消材料高吸收损耗, 以支持高性能轨道角动量(OAM)模式传输。选择最优参数, 实现 6个 OAM模式群的高模式质量、低限制损耗和宽带宽的稳定传输。在 0.2~0.9 THz宽波段内, 实现模式纯度超过 88.9%, 限制损耗小于 10-7 dB/m。通过软件仿真实验设计, 解决了太赫兹与 OAM技术相结合的关键问题, 为模分复用(MDM)技术在太赫兹通信系统的应用奠定了理论研究基础。
轨道角动量 太赫兹通信 光子晶体光纤 模分复用 Orbital Angular Momentum terahertz communication Photonic Crystal Fiber Mode Division Multiplexing 
太赫兹科学与电子信息学报
2023, 21(12): 1417
作者单位
摘要
1 复旦大学通信与信息工程学院通信科学与工程系,上海 200433
2 长飞光纤光缆股份有限公司,湖北 武汉 430073
为了解决急剧提升的通信系统容量需求与长距离传输等问题,通过实验验证了超大容量的少模光纤传输。在超大容量需求的背景下,同时使用波分复用、模分复用、偏振复用三种复用技术进行信号传输,凭借自研的低损耗六模渐变型光纤(各模式衰减约为0.2 dB/km),实现了覆盖C波段共80个通道,每个通道双模双偏振信号的1000 km传输。考虑到超长距离传输带来的色散和双模双偏振带来的串扰,在进行接收端离线数字信号处理(DSP)时首先使用频域色散补偿算法进行色散补偿,并在下采样和时钟恢复后联合利用多输入多输出-频域最小均方算法(MIMO-FDLMS)和多输入多输出-时域最小均方算法(MIMO-TDLMS)进行信道均衡和色散补偿。在28%冗余的低密度奇偶校验(LDPC)信道编码软判决前向纠错(SD-FEC)阈值5.2×10-2条件下,实现了总的线传输速率40.96 Tbit/s,净速率高达32 Tbit/s。
光通信 波分复用 模分复用 偏振复用 长距离传输 超大容量传输 
中国激光
2023, 50(23): 2306001
Author Affiliations
Abstract
1 Shanghai Jiao Tong University, Department of Electronic Engineering, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai, China
2 Nokia Bell Labs, Murray Hill, New Jersey, United States
3 Shanghai University, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai, China
4 Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, John Hopcroft Center for Computer Science, Shanghai, China
Mode-division multiplexing (MDM) technology enables high-bandwidth data transmission using orthogonal waveguide modes to construct parallel data streams. However, few demonstrations have been realized for generating and supporting high-order modes, mainly due to the intrinsic large material group-velocity dispersion (GVD), which make it challenging to selectively couple different-order spatial modes. We show the feasibility of on-chip GVD engineering by introducing a gradient-index metamaterial structure, which enables a robust and fully scalable MDM process. We demonstrate a record-high-order MDM device that supports TE0–TE15 modes simultaneously. 40-GBaud 16-ary quadrature amplitude modulation signals encoded on 16 mode channels contribute to a 2.162 Tbit / s net data rate, which is the highest data rate ever reported for an on-chip single-wavelength transmission. Our method can effectively expand the number of channels provided by MDM technology and promote the emerging research fields with great demand for parallelism, such as high-capacity optical interconnects, high-dimensional quantum communications, and large-scale neural networks.
integrated photonics metamaterial mode-division multiplexing subwavelength grating 
Advanced Photonics
2023, 5(5): 056008

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!