作者单位
摘要
1 郑州大学物理学院,河南 郑州 450001
2 郑州大学附属肿瘤医院,河南省肿瘤医院,河南 郑州 450003
高速光流控成像是融合了高速光学成像和微流控的新兴交叉技术,能够对高速复杂流体环境中的生物体进行高分辨率、高通量和多信息维度的成像和定量检测分析,在生物能源、食品科学、药物筛选、疾病诊断等领域展现出卓越的应用前景。对高速光流控成像的基本原理、关键技术和前沿进展进行综述,并对该技术未来的发展趋势和面临的挑战进行展望。
成像系统 高速成像 光流控 微流控芯片 
激光与光电子学进展
2024, 61(2): 0211015
陶也 1钟伟 1吴欣怡 1何涛 1,2,3,4[ ... ]程鑫彬 1,2,3,4,**
作者单位
摘要
1 同济大学物理科学与工程学院,同济大学精密光学工程技术研究所,上海 200092
2 先进微结构材料教育部重点实验室,上海 200092
3 上海市数字光学前沿科学研究基地,上海 200092
4 上海市全光谱高性能光学薄膜器件与应用专业技术服务平台,上海 200092
光镊技术通过在细小物体上施加光力对物体进行操控,而伴随光力产生的光力矩同样广泛存在于光学操控中。光力矩与光力一样,具有无接触、操控尺寸小、精度高等特点,在生物医学、物理学和量子科学等领域被广泛应用。光力矩根据其与施加光场偏振旋向的关系可分为正光力矩和负光力矩。从正负光力矩产生的原理和条件、光力矩的增强、光力矩的物理和生物应用出发,对光力矩光镊操控进行回顾和讨论,最后对光力矩光镊操控潜在的挑战进行了总结,对其未来的发展方向如微型扭矩测量、光驱动生物机器人等进行了展望。
光力矩 光镊 光流控 多功能操控 生物颗粒 
光学学报
2023, 43(16): 1623012
作者单位
摘要
深圳大学物理与光电工程学院,射频异质异构集成全国重点研究实验室,光电子器件与系统教育部/广东省重点实验室,广东 深圳 518060
面向生物粒子操控方法的研究,在生物医学和生命科学等领域具有重要意义。光镊操控具有无接触与高精度的特点,已被广泛应用于多个领域的研究中。然而,传统光镊的光热效应以及衍射极限都制约着光镊在生物医学领域的更广泛应用和发展。近十年来,研究者们将光热效应化劣势为优势,利用光与热的耦合效应实现了多种粒子的精确捕获及操控,即光致温度场光镊(OTFT)。由于此种新型光镊对光能的利用率极高,能量密度低于传统光镊近3个数量级,并可实现颗粒的大范围操控,极大地拓展了光镊可操控粒子的种类,已经成为纳米技术以及生命科学领域的重要研究工具。温度场光镊仍面临诸多问题,例如对于颗粒界面调控的依赖性以及三维捕获受限等,尤其是在生物光子学的研究中,还需要进一步发展和优化。本文对光致温度场光镊操控基本原理及其在生物医学中的应用两个方面进行了系统阐述,并对其今后的发展与挑战进行了展望。
光镊 光热镊 光流控 光热效应 微流控 生物传感器 
光学学报
2023, 43(14): 1400001
作者单位
摘要
南京邮电大学,电子与光学工程学院、微电子学院,南京 210046
通常一种光开关只适用于一个特定的较窄领域。文章提出了一种基于介质上电润湿驱动技术的微流控矩阵光开关,可较广泛地应用于光通信和光电子系统中,并且结构简单、操作方便、偏振无关,易集成大型矩阵开关。文章给出了矩阵光开关的结构和工作原理,并设计了矩阵驱动电路。光开关的工作电压为58 V。研究结果表明:此矩阵光开关从“开”到“关”和从“关”到“开”的响应时间分别为120和100 ms;其插入损耗为0.26 dB,远比一般矩阵光开关低;消光比大,为139.7 dB。此外,文章给出了两种应用方案:光电显示器和多光束阵列开关。该课题的工作可为大型可集成矩阵光开关提供新的思路,并可促进微流控光学在光电子系统中的应用。
微流控光学 介质上电润湿效应 矩阵光开关 optofluidics electrowetting-on-dielectric matrix optical switch 
光通信研究
2022, 48(6): 58
作者单位
摘要

光镊技术利用光与颗粒之间动量传递的力学效应对颗粒进行操控,具有无接触、操控尺寸小等优点,在生物医学和物理化学等领域具有重要的应用价值。光镊操控起初主要是在静态环境中对单个和多个颗粒进行操控,分为单/多光束光镊、全息光镊、等离子光镊、光纤光镊、特殊光力/力矩光镊和光电热镊子等。光镊技术随后与微流控技术进行结合诞生了光流控光镊操控技术,大大提高了可操控颗粒的数量和效率,同时也丰富了操控功能。本文从光流控光镊类别、物理机制以及生物医学应用等方面出发,对光流控光镊操控进行了回顾和讨论,最后对光流控光镊操控潜在的挑战进行了总结,对未来的发展方向如高通量单病毒操控和检测、光驱动机器人等进行了展望。

光学 精密工程
2022, 30(21): 2765
作者单位
摘要
南京邮电大学电子与光学工程学院,江苏 南京 210023
提出以一种2×2微流控光开关为单元的N×N光开关阵列,采用波导结构,利用微流控气压驱动技术和压电陶瓷阀来控制各个微流道内气体和液体的相对位置,实现开关阵列的光路选择和开关功能。同时给出N×N光开关阵列的部分阻塞型和完全无阻塞型两种拓扑结构,研究和讨论了N×N光开关阵列的最优路径和光传输特性,并进行结构优化。研究结果表明N×N光开关阵列的插入损耗和串扰远小于一般光开关阵列。对于1550 nm波长,其中4×4光开关阵列的插入损耗为0.28 dB~0.54 dB,最大串扰为-43.5 dB~-23.2 dB。该研究实现了微流控光开关阵列,解决了一般光开关阵列中普遍存在的插入损耗和串扰大的问题,具有阵列可控性好、偏振相关性损耗可忽略、宽波带(从可见光到近红外波段)的优点。
集成光学 微流控光学 光开关阵列 气压驱动 压电陶瓷阀 
光学学报
2022, 42(22): 2213001
Author Affiliations
Abstract
University of California, San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
Understanding light–matter interaction lies at the core of our ability to harness physical effects and to translate them into new capabilities realized in modern integrated photonics platforms. Here, we present the design and characterization of optofluidic components in an integrated photonics platform and computationally predict a series of physical effects that rely on thermocapillary-driven interaction between waveguide modes and topography changes of optically thin liquid dielectric film. Our results indicate that this coupling introduces substantial self-induced phase change and transmittance change in a single channel waveguide, transmittance through the Bragg grating waveguide, and nonlocal interaction between adjacent waveguides. We then employ the self-induced effects together with the inherent built-in finite relaxation time of the liquid film, to demonstrate that the light-driven deformation can serve as a reservoir computer capable of performing digital and analog tasks, where the gas–liquid interface operates both as a nonlinear actuator and as an optical memory element.
light–liquid interaction optofluidics nanophotonics silicon photonics reservoir computing thermocapillary effect 
Advanced Photonics
2022, 4(4): 046005
Author Affiliations
Abstract
University of Freiburg, Gisela and Erwin Sick Laboratory for Micro-Optics, Department of Microsystems Engineering, Freiburg, Germany
We discuss the implementation and performance of an adaptive optics (AO) system that uses two cascaded deformable phase plates (DPPs), which are transparent optofluidic phase modulators, mimicking the common woofer/tweeter-type astronomical AO systems. One of the DPPs has 25 electrodes forming a keystone pattern best suited for the correction of low-order and radially symmetric modes; the second device has 37 hexagonally packed electrodes better suited for high-order correction. We also present simulation results and experimental validation for a new open-loop control strategy enabling simultaneous control of both DPPs, which ensures optimum correction for both large-amplitude low-order, and complex combinations of low- and high-order aberrations. The resulting system can reproduce Zernike modes up to the sixth radial order with stroke and fidelity up to twice better than what is attainable with either of the DPPs individually. The performance of the new AO configuration is also verified in a custom-developed fluorescence microscope with sensorless aberration correction.
adaptive optics woofer/tweeter phase modulation optofluidics aberration correction open-loop control 
Advanced Photonics
2020, 2(6): 066005
Jiaomeng Zhu 1,2Xiaoqiang Zhu 1,2Yunfeng Zuo 1,2Xuejia Hu 1,2[ ... ]Yi Yang 1,2,*
Author Affiliations
Abstract
1 Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
2 Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
Optofluidics is a rising technology that combines microfluidics and optics. Its goal is to manipulate light and flowing liquids on the micro/nanoscale and exploiting their interaction in optofluidic chips. The fluid flow in the on-chip devices is reconfigurable, non-uniform and usually transports substances being analyzed, offering a new idea in the accurate manipulation of lights and biochemical samples. In this paper, we summarized the light modulation in heterogeneous media by unique fluid dynamic properties such as molecular diffusion, heat conduction, centrifugation effect, light-matter interaction and others. By understanding the novel phenomena due to the interaction of light and flowing liquids, quantities of tunable and reconfigurable optofluidic devices such as waveguides, lenses, and lasers are introduced. Those novel applications bring us firm conviction that optofluidics would provide better solutions to high-efficient and high-quality lab-on-chip systems in terms of biochemical analysis and environment monitoring.
optofluidics optical devices microfluidic chip 
Opto-Electronic Advances
2019, 2(11): 11190007
Author Affiliations
Abstract
University of California, Department of Electrical and Computer Engineering, San Diego, La Jolla, California, United States
Optical metamaterials and metasurfaces, which emerged in the course of the last few decades, have revolutionized our understanding of light and light–matter interaction. While solid materials are naturally employed as key building elements for construction of optical metamaterials mainly due to their structural stability, practically no attention was given to study of liquid-made optical two-dimensional (2-D) metasurfaces and the underlying interaction regimes between surface optical modes and liquids. We theoretically demonstrate that surface plasmon polaritons and slab waveguide modes that propagate within a thin liquid dielectric film trigger optical self-induced interaction facilitated by surface tension effects, which leads to the formation of 2-D optical liquid-made lattices/metasurfaces with tunable symmetry and can be leveraged for tuning of lasing modes. Furthermore, we show that the symmetry breaking of the 2-D optical liquid lattice leads to phase transition and tuning of its topological properties, which allows the formation, destruction, and movement of Dirac-points in the k-space. Our results indicate that optical liquid lattices support extremely low lasing threshold relative to solid dielectric films and have the potential to serve as configurable analogous computation platform.
light–fluid interaction optofluidics optical metasurfaces nanoplasmonics nanophotonics 
Advanced Photonics
2019, 1(6): 066003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!