Author Affiliations
Abstract
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Our previous work had proved pump field noise coupling in the seed field injected optical parametric amplifier (OPA) at a certain analysis frequency. Inspired by this noise coupling mechanism, the frequency dependent squeezing factor due to excess pump noise was experimentally demonstrated. Apart from a reduced squeezing level with an increased noise, the results also prove that a broadband squeezing noise spectrum is not frequency dependent on the amplitude modulated pump field, but limited by the bandwidth of the amplitude modulator and OPA resonator, and the effective measurement is carried out in the frequency range of 2–10 MHz. It provides a guidance to design a broader-bandwidth, higher-level bright squeezed light.
quantum optics nonlinear optics parametric processes squeezed states 
Chinese Optics Letters
2021, 19(5): 052703
Author Affiliations
Abstract
1 Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Ultrafast Laser Laboratory, Tianjin, China
2 Leibniz Universität Hannover, Institut für Quantenoptik, Hannover, Germany
3 Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovation Across Disciplines), Hannover, Germany
Optical vortices, which carry orbital angular momentum, offer special capabilities in a host of applications. A single-laser source with dual-beam-mode output may open up new research fields of nonlinear optics and quantum optics. We demonstrate a dual-channel scheme to generate femtosecond, dual-wavelength, and dual-beam-mode tunable signals in the near infrared wavelength range. Dual-wavelength operation is derived by stimulating two adjacent periods of a periodically poled lithium niobate crystal. Pumped by an Yb-doped fiber laser with a Gaussian (lp = 0) beam, two tunable signal emissions with different beam modes are observed simultaneously. Although one of the emissions can be tuned from 1520 to 1613 nm with the Gaussian (ls = 0) beam, the other is capable of producing a vortex spatial profile with different vortex orders (ls = 0 to 2) tunable from 1490 to 1549 nm. The proposed system provides unprecedented freedom and will be an exciting platform for super-resolution imaging, nonlinear optics, multidimensional quantum entanglement, etc.
nonlinear optics parametric processes optical parametric oscillators ultrafast nonlinear optics 
Advanced Photonics
2020, 2(4): 045001
Author Affiliations
Abstract
State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
A high repetition rate, picosecond terahertz (THz) parametric amplifier with a LiNbO3 (LN) crystal has been demonstrated in this work. At a 10 kHz repetition rate, a peak power of 200 W and an average power of 12 μW have been obtained over a wide range of around 2 THz; at a 100 kHz repetition rate, a maximum peak power of 18 W and an average power of 10.8 μW have been obtained. The parametric gain of the LN crystal was also investigated, and a modified Schwarz–Maier model was introduced to interpret the experimental results.
far infrared or terahertz nonlinear optics parametric processes parametric oscillators and amplifiers 
Chinese Optics Letters
2020, 18(5): 051901
Author Affiliations
Abstract
1 Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045, USA
2 Information and Telecommunication Technology Center, The University of Kansas, Lawrence, KS 66045, USA
In the context of nonlinear plasmonics, we review the recently introduced concept of plasmonic parametric resonance (PPR) and discuss potential applications of such phenomena. PPR arises from the temporal modulation of one or more of the parameters governing the dynamics of a plasmonic system and can lead to the amplification of high-order sub-radiant plasmonic modes. The theory of PPR is reviewed, possible schemes of implementation are proposed, and applications in optical limiting are discussed.
240.6680 Surface plasmons 250.4390 Nonlinear optics, integrated optics 190.4975 Parametric processes 
Chinese Optics Letters
2019, 17(12): 122402
Author Affiliations
Abstract
1 Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083, China
2 Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
In this Letter, a new method is presented to calculate the interactive length between the fundamental wave and second harmonic generation (SHG) for the configuration of total internal reflection on the inner surface of a nonlinear crystal. Three independent experiments are designed to measure the bandwidths of this second harmonic wave. The theoretical expression of the intensity of SHG is obtained through a nonlinear coupled wave equation. The interactive length of this phase-matched SHG can be calculated mathematically by utilizing the measured bandwidths and the intensity equation. There is no existing method to obtain the interactive length either from theoretical calculations or by experimental measurement. This method can be applied to estimate the extremely short interactive volume in nonlinear processes.
190.4410 Nonlinear optics, parametric processes 190.2620 Harmonic generation and mixing 
Chinese Optics Letters
2019, 17(8): 081902
Author Affiliations
Abstract
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Squeezed states belong to the most prominent non-classical resources. They have compelling applications in precise measurement, quantum computation, and detection. Here, we report on the direct measurement of 13.8 dB squeezed vacuum states by improving the interference efficiency and gain of balanced homodyne detection. By employing an auxiliary laser beam, the homodyne visibility is increased to 99.8%. The equivalent loss of the electronic noise is reduced to 0.05% by integrating a junction field-effect transistor (JFET) buffering input and another JFET bootstrap structure in the balanced homodyne detector.
270.6570 Squeezed states 190.4410 Nonlinear optics, parametric processes 
Chinese Optics Letters
2019, 17(7): 072701
Chunxiao Cai 1,2Long Ma 1,2Juan Li 1,2Hui Guo 1,2[ ... ]Jiangrui Gao 1,2,*
Author Affiliations
Abstract
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
As a highly entangled quantum network, the cluster state has the potential for greater information capacity and use in measurement-based quantum computation. Here, we report generating a continuous-variable quadripartite “square” cluster state of multiplexing orthogonal spatial modes in a single optical parametric amplifier (OPA), and further improve the quality of entanglement by optimizing the pump profile. We produce multimode entanglement of two first-order Hermite–Gauss modes within one beam in a single multimode OPA and transform it into a cluster state by phase correction. Furthermore, the pump-profile dependence of the entanglement of this state is explored. Compared with fundamental mode pumping, an enhancement of approximately 33% is achieved using the suitable pump-profile mode. Our approach is potentially scalable to multimode entanglement in the spatial domain. Such spatial cluster states may contribute to future schemes in spatial quantum information processing.
Nonlinear optics, parametric processes Squeezed states 
Photonics Research
2018, 6(5): 05000479
Author Affiliations
Abstract
1 Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
3 Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Quasi-parametric chirped-pulse amplification (QPCPA) can improve the signal amplification efficiency and stability by inhibiting the back-conversion, in which the idler absorption plays a critical role. This Letter theoretically studies the impacts of idler absorption on the QPCPA performance in both the small-signal and saturation regimes. We demonstrate that there exists an optimal idler absorption that enables the achievement of maximum pump depletion within a minimum crystal length. To overcome the reduction in small-signal gain induced by idler absorption, the configuration of gradient idler absorption is proposed and demonstrated as a superior alternative to constant idler absorption. The results provide guidelines to the design of state-of-the-art QPCPA lasers.
190.4410 Nonlinear optics, parametric processes 
Chinese Optics Letters
2018, 16(12): 121901
Author Affiliations
Abstract
1 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Osaka University, Osaka 565-0871, Japan
In this Letter, we experimentally explore the pulse-contrast degradation caused by surface reflection in optical parameter chirped-pulse amplification. Different pump-to-signal conversion efficiencies and post-pulses with different intensities are obtained by changing the seed-pulse or pump-pulse energy and inserting etalons with different reflection coefficients, respectively. The contrast measurements show that the generated first pre-pulse intensity is proportional to the product of the surface reflection intensity ratio and the square of the pump-to-signal conversion efficiency.
190.4410 Nonlinear optics, parametric processes 
Chinese Optics Letters
2018, 16(5): 053201
Author Affiliations
Abstract
Institute for the Frontier of Attosecond Science and Technology, CREOL and Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
We experimentally demonstrate efficient generation of high-energy (82 μJ) narrowband 2.05 μm pulses pumped with 1 mJ broadband Ti:sapphire laser pulses, utilizing dual-chirped optical parametric amplification (DC-OPA) in a BBO crystal. The narrowband 2.05 μm pulses will be primarily used for seeding an Ho:YLF laser, which solves the synchronization issue when Ti:sapphire and Ho:YLF lasers are needed for developing midinfrared lasers. The narrowband 2.05 μm pulse from the unique DC-OPA design can seed the Ho:YLF laser much more efficiently than the broadband 2.05 μm pulse from traditional OPA technology.
Ultrafast lasers Nonlinear optics, parametric processes 
Photonics Research
2018, 6(1): 01000001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!