作者单位
摘要
香港大学物理系新基石科学实验室,香港 999077
耦合等离激元体系在光场调控、光学传感、光学成像及光电器件等领域中有着广泛应用。目前,阻碍耦合等离激元进一步实用化发展的关键问题是金属材料具有较大的损耗。结合数值仿真方法,从理论上研究了耦合等离激元的损耗机理,并进一步分析复频率光源激励对耦合等离激元体系的作用,提出了通过合成复频率波的方法来补偿损耗,从而恢复被削弱的耦合共振信号。所提优化手段具有泛用性高且无需额外成本的优势,研究结果对耦合等离激元体系在各个领域中的研究发展具有借鉴意义,有利于挖掘该体系的潜在应用价值。
物理光学 纳米光学 等离激元 复频率波 光学传感 
光学学报
2024, 44(10): 1026019
作者单位
摘要
暨南大学光子技术研究院广东省光纤传感与通讯重点实验室,广东 广州 511443
传统斯格明子是一种在核物理和磁性材料中均已被证明具有拓扑稳定性的准粒子,可应用于逻辑器件、晶体管、量子计算等领域。近年来,光学斯格明子被人们所提出,并引起了拓扑光学与光场调控领域研究者们的广泛兴趣。综述了当前光学斯格明子的研究进展,详细介绍了光学斯格明子的拓扑结构分类、不同矢量构型光学斯格明子的产生与调控,并对其潜在应用进行了展望,为本领域进一步快速发展提供了参考。
物理光学 斯格明子 拓扑光学 结构光场调控 
光学学报
2024, 44(10): 1026005
王为民 1寇君龙 1,2,4,**陆延青 1,3,4,*
作者单位
摘要
1 南京大学电子科学与工程学院,江苏 南京 210023
2 南京大学集成电路学院,江苏 苏州 215163
3 南京大学现代工程与应用科学学院,江苏 南京 210023
4 武进南京大学未来技术创新研究院,江苏 常州 213153
二维光子晶体板的介电常数分布具有面内的空间周期性,并支持可辐射到自由空间的导模共振。这些辐射到远场的模式可以用动量进行标记,并具有偏振态,因此可以定义动量空间中的偏振场。通过研究不同结构参数和对称性下偏振场的特性以及与外界相互作用的规律,能够为光场操控提供新思路。本文介绍了二维光子晶体板在动量空间中的偏振场的相关特性,并综述了近年来相关的研究和应用。
物理光学 光子晶体 偏振场 偏振奇点 拓扑电荷 
光学学报
2024, 44(10): 1026003
作者单位
摘要
1 深圳大学射频异质异构集成全国重点实验室,微纳光电子学研究院纳米光子学研究中心,广东 深圳 518060
2 之江实验室智能感知研究院,浙江 杭州 311100
自旋角动量是基本粒子和场的一个基本的动力学物理量,它在光与物质相互作用中扮演着极其重要的角色。在光学研究中,光的自旋角动量与圆极化密切相关,通过研究光学自旋与物质或结构的相互作用产生了许多新颖有趣的光学现象和光学应用,并诞生了自旋光学这一新兴学科。过去的研究中,研究人员主要聚焦在与平均波矢方向平行的纵向光学自旋。近年来,科研人员通过研究限制场如聚焦波、导波和倏逝波等的自旋轨道耦合性质,发现了一类新型的光学自旋,这类自旋与平均波矢方向垂直,因此被称为光学横向自旋。横向自旋具有自旋动量绑定的性质,一经发现便受到研究人员的广泛关注。横向自旋的发现拓展了光学自旋轨道相互作用的内容,并在光学操纵、光学精密检测、手性量子光学和光学自旋拓扑态等领域具有广阔的应用前景。本文从理论、实验技术和应用3个方面详细介绍自旋光学的最新进展。自旋光学的理论概念和框架可为研究人员进一步开拓基于光学自旋在光学成像、光学探测、光通信和量子技术等领域的应用发挥巨大的作用,同时也可拓展到一般经典波场,比如流体波、声波和引力波等。
物理光学 自旋角动量 自旋动量绑定 自旋轨道耦合 光学微分计算 光学探测 横向光学力 
光学学报
2024, 44(10): 1026002
作者单位
摘要
1 区域光纤通信网与新型光通信系统国家重点实验室,上海交通大学物理与天文学院,上海 200240
2 上海量子科学研究中心,上海 201315
波前整形方法通过改变入射光的相位模式分布来补偿由散射引起的相位畸变,使散射光子可以被有效地利用,从而实现散射光场调控。通过散射光场调控可以将有害的散射介质变成可控的光学元件,实现光的定向传输、动态检测等功能,为其在各领域中的应用提供了一种强大的工具。本文在介绍光场散射特性及其调控方法原理的基础上,介绍了散射光场空间、偏振、频率、能量和轨道角动量等自由度的调控方法,随后重点介绍了散射光场调控在成像、通信、非线性光学、量子光学、光学检测、集成光学和光计算等领域的最新研究进展。
物理光学 散射 光场调控 波前整形 传输矩阵 
光学学报
2024, 44(10): 1026006
作者单位
摘要
1 浙江师范大学物理与电子信息工程学院,浙江 金华 321004
2 浙江省光信息检测与显示技术研究重点实验室,浙江 金华 321004
提出一种环形相位构造方法,并通过实验产生了一种可调谐手性结构光场。在螺旋相位的基础上引入径向相位与等相相位形成环形子相位,在平面波上加载该相位产生单环手性结构光场。进一步利用相位叠加原理,组合多个不同环形子相位构成一个环形相位,进而利用其调控产生多环形手性结构光场。研究发现,通过控制拓扑荷数、等相位因子、径向偏移因子,能够灵活控制螺旋强度瓣叶的数量以及手性方向。此外,通过引入等相位梯度实现了光场的动态旋转。所构建的可调谐手性结构光场有益于手性结构微加工,在光学微操纵及光学通信领域也有较大的潜在应用价值。
物理光学 光场调控 相位调制 结构光场 手性光场 
光学学报
2024, 44(8): 0826002
作者单位
摘要
西安工业大学光电工程学院陕西省薄膜技术与光学检测重点实验室,陕西 西安 710021
提出一种可用于非球面面形检测的同步环带子孔径干涉(SASI)检测方法。该方法利用双焦点透镜形成两个测量波前来匹配非球面不同子孔径区域,进而实现非球面的同步环带子孔径干涉测量。分析SASI检测非球面面形的原理,确定双焦点透镜的焦点间距选取原则,建立子孔径的基准统一模型,通过光学追迹软件辅助建模和坐标变换实现子孔径基准统一与非球面面形重构。结合实例对一个口径为90 mm、顶点曲率半径为317 mm的抛物面进行面形检测实验,SASI方法面形重构结果与Luphoshcan方法检测结果的对比,验证了SASI方法的正确性。该方法在一定程度上扩大了干涉仪直接检测非球面的动态范围,且无需复杂的运动机构就可以同步得到被测非球面两个子孔径区域的干涉图样,加快了检测速度、降低了运动误差对测量精度的影响。
物理光学 干涉测量 非球面检测 非零位测量 同步环形子孔径 
光学学报
2024, 44(8): 0826001
作者单位
摘要
上海大学理学院物理系,上海 200444
与传统的仅能生成光轴方向的球形聚焦光斑不同,本文提出了一种在4Pi聚焦系统中通过反聚焦偶极子天线辐射场产生具有规定空间方向和间距的球形聚焦光斑的方法。该方法是将规定好长度和极化方向的空间偶极子天线置于4Pi聚集系统的焦点处,通过逆问题解析求解出生成球形聚焦光斑的物镜瞳孔面上的输入场。然后使用瞳孔面处的场,并选择合适的偶极子天线长度,就能获得球形聚焦光斑。数值结果表明,创建的球形聚焦光斑的空间方向与设置的偶极子天线的极化方向一致,球形聚焦光斑之间的距离也等于偶极子天线的长度。本文提出的方法比传统方法更灵活,可以创建具有规定空间位置的球形聚焦光斑,这对空间任意位置捕获纳米粒子具有很大的应用价值。
物理光学 球形聚焦光斑 偶极子天线 4Pi聚焦系统 
光学学报
2024, 44(10): 1026033
余惠 1,2丁新辉 1,2李大为 1周琼 1[ ... ]卢兴强 1,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
针对具有圆对称结构特征的光束,提出了一种基于高阶准离散汉克尔变换的光束整形算法。与传统Gerchberg-Saxton算法相比,相同条件下,该算法能够在较少的迭代次数内实现快速收敛,并大幅节省计算时间(约100倍),利用该算法设计的衍射光学元件呈圆对称分布,结构简单、更易于加工;此外,设计实验对目标光束整形,验证了该算法的可行性,实验结果光强分布较好,为衍射光学元件的设计和加工提供了重要的指导意义。
物理光学 汉克尔变换 光束整形算法 Gerchberg-Saxton算法 衍射光学元件 
光学学报
2024, 44(7): 0726001
作者单位
摘要
1 运城学院物理与电子工程系,山西 运城 044000
2 山西省光电信息科学与技术实验室,山西 运城 044000
基于梯度折射率介质,分析了洛默尔高斯光束的强度包络和传输特性,给出了洛默尔高斯光束的强度表达式。高斯腰斑取值越小,洛默尔高斯光束的非零区域越小即高斯光束的截断作用越明显;半锥角取值越大,光束的空间尺度越小;拓扑荷数取值越大,光束中心的暗斑尺寸越大。非对称参数可以改变洛默尔高斯光束的空间形态和对称特性,随着非对称参数幅值的增加,光强分布逐渐由圆对称改变为轴对称的双月结构,随着非对称参数幅角的增大,双月结构的对称轴呈现顺时针旋转的特性。洛默尔高斯光束在梯度折射率介质中传输时,在一个传输周期内,光束的相对强度分布没有变化,只是光束尺度发生周期性聚焦变化,而在自由空间中,光束会很快演化为两个光斑。这些结果对研究洛默尔高斯光束的实际应用具有一定参考价值。
物理光学 光场调控 洛默尔高斯光束 梯度折射率介质 
激光与光电子学进展
2024, 61(9): 0926001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!