刘慧银 1,2,3杨洁 1,*黄畅 2,3唐彬 2,3,**[ ... ]孙志嘉 2,3
作者单位
摘要
1 郑州大学郑州 450001
2 中国科学院高能物理研究所北京 100049
3 散裂中子源科学中心东莞 523803
微小角中子散射谱仪是中国散裂中子源(China spallation neutron source,CSNS)工程目前在建的谱仪之一,为了实现微小角散射模式下中子衍射的精确测量,要求中子探测器的位置分辨≤2 mm、探测效率≥60%@0.4 nm。在此物理精度需求下,研制了基于6LiF/ZnS(Ag)闪烁屏、波移光纤阵列和硅光电倍增管(Silicon Photomultiplier,SiPM)结构的位置灵敏型闪烁体探测器,以实现热中子的高效率和高分辨实时探测。探测效率测试以标准3He管的入射中子数归一化计算得到,位置分辨通过含有“CSNS”字样的含硼铝板验证。本文详细研究了0.5 mm直径波移光纤的光传输性能,对比了不同硅光电倍增管的增益和热噪声特性,并以此设计了有效面积为300 mm×300 mm的探测器工程样机。经测试,该探测器的位置分辨为1.2 mm×1.2 mm,探测效率为(61.8±0.2)%@0.4 nm,达到了工程设计指标,满足了CSNS工程微小角谱仪的中子衍射测量需求。
闪烁体探测器 硅光电倍增管 波移光纤 位置分辨 探测效率 Neutron scintillator detector Silicon photomultiplier Wavelength shift fiber Position resolution Detection efficiency 
核技术
2024, 47(2): 020401
作者单位
摘要
1 中国科学院上海光学精密机械研究所航天激光工程部,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
提出一种基于四象限探测器跟瞄和通信复用的强度调制直接探测的空间光通信系统,以超声波电机驱动的双光楔为光束偏转执行单元形成光束位置跟踪的闭环系统。驱动电机转动周期为15 ms,位置分辨率为0.83 μrad。经理论分析和实验验证,该系统的位置闭环跟踪-3 dB带宽约为4 Hz。当位置探测误差小于10%时,即光束探测精度小于12 μrad,对应的探测灵敏度为-45.2 dBm。在10 Mbit/s的通信速率和无信号编码下,误码率为1×10-3时对应的通信灵敏度为-44 dBm。验证了利用四象限探测器作为跟踪与通信复用探测器的可行性,可应用于小型化、轻量化的星间激光通信终端。
自由空间光通信 四象限探测器 位置分辨率 跟踪带宽 通信灵敏度 
激光与光电子学进展
2024, 61(7): 0706013
作者单位
摘要
1 南京航空航天大学 材料科学与技术学院南京 210000
2 兰州大学 核科学与技术学院兰州 730000
n/γ射线双粒子反应深度(Depth of Interaction,DOI)探测器可以实现中子与γ射线甄别并记录粒子在探测器中的反应位置,在对特殊核材料等危险放射性物质的定位成像研究中发挥着重要作用。传统的放射性定位成像装置都依赖具有n/γ射线甄别能力的探测器阵列,从而导致成像测量装置结构复杂、成本高。针对此问题,设计了一种基于EJ276塑料闪烁体(Φ3 cm×15 cm)的双粒子反应深度探测器,采用硅光电倍增管在闪烁体两端进行信号读出,并综合利用两端信号幅度与飞行时间对比进行粒子反应位置确定。利用Am-Be中子源和137Cs γ源对探测器进行参数优化和分辨率刻度,结果显示:该探测器在灵敏区内探测效率均匀性较好,反应位置分辨率约4.4 cm。
反应深度探测器 塑料闪烁体 n/γ甄别 位置分辨率 Depth-of-interaction detector Plastic scintillator Neutron/gamma-ray discrimination Position resolution 
核技术
2023, 46(7): 070402
宋海声 1董彩霞 1,2牛德芳 1,2庄凯 2,3[ ... ]薛玉雄 5
作者单位
摘要
1 西北师范大学物理与电子工程学院,甘肃 兰州 730000
2 中国科学院高能物理研究所北京市射线成像技术与装备工程技术研究中心,北京 100049
3 中国科学院大学核科学与技术学院,北京 100049
4 中国航天科工集团有限公司第二研究院未来实验室,北京 100049
5 兰州空间技术物理研究所真空技术与物理国家级重点实验室,甘肃 兰州 730000
以粒子与物质相互作用为理论基础,使用FLUKA蒙特卡罗模拟软件分析带电粒子的能量、入射角度、探测器厚度和灵敏面积等因素对位置灵敏硅探测器(PSSD)位置分辨能力的影响。模拟结果表明,随着电子能量的增加,探测器的位置分辨能力变差,当电子能量增大到可以穿过探测器时,位置分辨能力随着能量的增加逐渐提高;对于不同厚度的探测器来说,当电子能量完全沉积在探测器中时,探测器的位置分辨能力基本相同,当电子能量未能完全沉积在探测器中时,厚度较大的探测器位置分辨能力相对较差;探测器的面积有限会影响位置分辨能力;当电子以入射角度α45°入射探测器时,探测到的电子位置会沿着入射角度发生偏移,入射角度越大,偏移越明显。
探测器 带电粒子 FLUKA 电子 位置灵敏硅探测器 位置分辨 
激光与光电子学进展
2021, 58(5): 0504002
作者单位
摘要
1 中国科学院 高能物理研究所,北京 100049;中国科学院大学,北京 100049
2 中国科学院 高能物理研究所,北京 100049
3 中国科学院 高能物理研究所,北京 100049;中国散裂中子源科学中心,东莞 523803
研究了基于BEPCⅡ直线加速器的腔式束流位置探测系统(CBPM)的设计。本方案给出的CBPM探头工作频率为S波段,束流管道半径23 mm,参考腔TM010工作频率和位置腔TM110的工作频率一致。由线下测试结果可知,CBPM实物特征参数与仿真结果一致,CBPM水平和垂直方向工作频率分别为2502 MHz和2503 MHz;垂直和水平的四个端口交叉隔离度均优于?44.7 dB;测量线性区域好于10 mm。射频前端电子学负责对CBPM探头的模拟信号进行滤波、放大和下变频等调制。将CBPM探头置于标定平台,对经过CBPM信号进行时域和频域分析,通过计算得到CBPM水平、垂直方向线下分辨率分别为2.87 μm、2.16 μm。
腔式束流位置探测系统 交叉隔离度 分辨率 BEPCⅡ TM110 BEPCⅡ cavity beam position monitor TM110 cross-talk isolation position resolution 
强激光与粒子束
2020, 32(10): 104001
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所光电探测技术研究部, 吉林 长春 130033
2 中国科学院国家天文台长春人造卫星观测站光电观测研究室, 吉林 长春 130033
为了分析四象限探测器(QD)激光光斑位置检测性能,建立了新的高斯光斑位置分辨率数学模型。分析了高斯光斑模型下QD位置检测原理和近似数学模型,根据误差函数可导性,结合误差理论推导出位置分辨率与总信噪比、光斑中心位置和光斑半径关系的数学模型,数值仿真和实验系统验证了所提模型的正确性。结果表明,当光斑半径为0.74 mm,总信噪比为66.96 dB时,在光斑中心偏移±0.45 mm范围内,所提模型的估算误差约为36%,与原近似模型相比,精度提高了约1倍,可以对激光光斑位置检测系统的位置分辨率进行有效估算。
测量 四象限探测器 位置检测 位置分辨率 高斯光斑 
中国激光
2019, 46(9): 0904004
朱静 1,2,*汪启胜 1黄胜 1陶世兴 1[ ... ]何建华 1
作者单位
摘要
1 中国科学院 上海应用物理研究所,上海 201800
2 中国科学院 研究生院,北京 100049
研制了一台一维位置灵敏电离室。该电离室的收集电极由两块完全一样的相互独立并彼此绝缘的单元构成,每个单元有两路劈裂式极板,根据输出的电流信号可获得X光束的强度和位置。该电离室在上海光源(SSRF)生物大分子晶体学光束线上进行了实验测试,测试中采用了一个标准电离室作为强度测量对照。一维位置灵敏电离室被固定在一维电控滑台上,在水平方向上移动电控滑台逐步扫描测试光束的位置。测量时,光子能量为8 keV,扫描范围为10 mm,重复扫描12次;测试内容包括电离室的坪区、线性度、位置测量精度及光强。结果表明,该电离室的线性度较好,位置测量精度好于20 μm,线性测量范围为6 mm。它将安装在生物大分子晶体学光束线站上用于光束稳定性的监测。
电离室 光强监测 位置监测 线性度 位置精度 ionization chamber intensity monitoring position sensitive monitoring linearity position resolution 
光学 精密工程
2010, 18(3): 544

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!