Dawei Yuan 1,2,*Shaojun Wang 3,7Huigang Wei 1Haochen Gu 3,7[ ... ]Jie Zhang 3,4,6,*
Author Affiliations
Abstract
1 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
2 Institute of Frontiers in Astronomy and Astrophysics of Beijing Normal University, Beijing, China
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
4 Key Laboratory for Laser Plasmas (MOE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
5 Department of Astronomy, Beijing Normal University, Beijing, China
6 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China
7 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
8 Songshan Lake Materials Laboratory, Dongguan, China
The velocity interferometer system for any reflector (VISAR) coupled with a streaked optical pyrometer (SOP) system is used as a diagnostic tool in inertial confinement fusion (ICF) experiments involving equations of state and shock timing. To validate the process of adiabatically compressing the fuel shell through precise tuning of shocks in experimental campaigns for the double-cone ignition (DCI) scheme of ICF, a compact line-imaging VISAR with an SOP system is designed and implemented at the Shenguang-II upgrade laser facility. The temporal and spatial resolutions of the system are better than 30 ps and 7 μm, respectively. An illumination lens is used to adjust the lighting spot size matching with the target size. A polarization beam splitter and λ/4 waveplate are used to increase the transmission efficiency of our system. The VISAR and SOP work at 660 and 450 nm, respectively, to differentiate the signals from the scattered lights of the drive lasers. The VISAR can measure the shock velocity. At the same time, the SOP system can give the shock timing and relative strength. This system has been used in different DCI campaigns, where the generation and propagation processes of multi-shock are carefully diagnosed.
double-cone ignition streaked optical pyrometer velocity interferometer system for any reflector 
High Power Laser Science and Engineering
2024, 12(1): 010000e6
Zhiyu He 1Guo Jia 1,†Fan Zhang 1Xiuguang Huang 1,2[ ... ]Sizu Fu 1,2
Author Affiliations
Abstract
1 Shanghai Institute of Laser Plasma, CAEP, Shanghai 201800, China
2 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
3 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Although the streaked optical pyrometer (SOP) system has been widely adopted in shock temperature measurements, its reliability has always been of concern. Here, two calibrated Planckian radiators with different color temperatures were used to calibrate and verify the SOP system by comparing the two calibration standards using both multi-channel and single-channel methods. A high-color-temperature standard lamp and a multi-channel filter were specifically designed for the measurement system. To verify the reliability of the SOP system, the relative deviation between the measured data and the standard value of less than 5% was calibrated out, which demonstrates the reliability of the SOP system. Furthermore, a method to analyze the uncertainty and sensitivity of the SOP system is proposed. A series of laser-induced shock experiments were conducted at the ‘Shenguang-II’ laser facility to verify the reliability of the SOP system for temperature measurements at tens of thousands of kelvin. The measured temperature of the quartz in our experiments agreed fairly well with previous works, which serves as evidence for the reliability of the SOP system.
laser-induced shock waves shock temperature measurement streaked optical pyrometer 
High Power Laser Science and Engineering
2019, 7(3): 03000e49
作者单位
摘要
中国科学院 西安光学精密机械研究所, 陕西 西安 710119
针对激光聚变装置冲击波速度被动测量的需求, 设计了一种测速光学系统。采用高紫外透过率的氟化玻璃, 实现了透射式300~800 nm复消色差设计。系统光路具有前后两组镜头, 中间为平行光, 镜头间距可变, 光路适应能力强。系统前端两侧的双目机器视觉能够完成自动寻的。平行光路中设置5个激光器, 轴上的1个前向照明靶点用来观察条纹相机狭缝处的目标像质, 轴外的4个与光轴平行后向传输用来标识系统光轴的位置, 激光器部件可电动切入/切出。系统前组镜头F/#数为4, 宽谱工作物方分辨率优于10 μm, 532 nm单波长工作物方分辨优于5 μm。该光学系统光路排布灵活, 可单独被动测速, 也可与主动测速系统VISAR耦合构成主被一体复合测速系统, 满足激光聚变装置冲击波测速的需求。
光学系统设计 冲击波速度 多普勒频移 扫描高温计 optical system design shock velocity Doppler shift streaked optical pyrometer 
光学 精密工程
2018, 26(11): 2662

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!