作者单位
摘要
空军工程大学等离子体动力学重点实验室, 陕西 西安 710038
通过介质阻挡放电产生的等离子体可与燃料中的烃类分子发生碰撞裂解反应, 将燃料分子裂解生成更容易起爆的氢气和小分子烃类, 能有效改善液体燃料连续旋转爆震发动机的起爆性能。 该研究在真空仓中开展体积介质阻挡放电的丝状放电光谱测试, 分析了大气压氩气环境下体积介质阻挡放电的电子激发温度和电子密度随加载电压的变化规律。 丝状放电的电子激发温度通过波尔兹曼斜率法计算, 电子密度采用斯塔克展宽法计算。 发现发射谱线均由氩原子4p—4s能级跃迁产生; 各谱线强度随加载电压的提高均呈上升趋势, 且与电压基本呈线性关系; 对于大气压丝状放电, 加载电压对电子激发温度和电子密度没有明显影响作用, 加载电压12.5~14.5 kV范围内, 电子激发温度稳定在3 400 K附近, 电子密度在1025 m-3量级。
丝状放电 发射光谱 电子激发温度 电子密度 Filamentous discharge Emission spectra Electron excitation temperatures Electron number density 
光谱学与光谱分析
2018, 38(6): 1675
姜慧 1,2,*章程 1,3邵涛 1,3车学科 4[ ... ]严萍 1,3
作者单位
摘要
1 中国科学院 电工研究所, 北京 100190
2 中国科学院 研究生院, 北京 100039
3 中国科学院 电力电子与电气驱动重点实验室, 北京 100190
4 中国人民解放军 装备学院, 北京 101416
在常规大气环境条件下,基于单极性纳秒脉冲电源对表面介质阻挡放电特性进行了实验研究。结果表明:纳秒脉冲表面介质阻挡放电的本质是丝状放电,放电集中在电压脉冲的上升沿;激励电压和脉冲重复频率越大,放电越强烈,越接近均匀放电,但电压的作用更侧重于均匀性,而频率的作用则侧重于放电的强度;电极间隙的优化可以使表面介质阻挡放电特性最好;玻璃作为阻挡介质时容易发生沿面闪络。surface dielectric barrier discharge1,2
纳秒脉冲 表面介质阻挡放电 丝状放电 电极间隙 沿面闪络 nanosecond pulse surface dielectric barrier discharge filamentary discharge electrode gap surface flashover 
强激光与粒子束
2012, 24(3): 592

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!