作者单位
摘要
季华实验室,广东 佛山 528200
光学渐晕效应存在于大部分光学成像系统,严重影响成像质量。如何有效改善光学渐晕效应是航天光学遥感器设计的要点。采用辐射定标方法量化成像系统中光学渐晕效应的影响,并获得校正系数。采用多项式拟合方法对校正系数进行优化,拟合后校正系统减少约3个数量级,大大降低了对嵌入式系统存储资源的需求。通过多项式拟合方法有效减少了校正系数,对光学渐晕效应改善效果良好,校正前相机的非均匀性误差为13.2%,校正后非均匀性误差降至3.8%,满足一般成像系统对响应非均匀性的要求。该方法校正系数少,适合在基于FPGA处理器中实现,实时性强,资源占用少,具有工程实用价值。
信息处理 折反式光学系统 光学渐晕效应 二次多项式拟合 information processing refractive and reflective optical systems optical vignetting effect quadratic polynomial fitting FPGA FPGA 
半导体光电
2023, 44(3): 455
作者单位
摘要
天津理工大学 天津市先进机电系统设计与智能控制重点实验室,天津300384
为消除基线畸变对光谱信号后续处理产生的不利影响,提出了一种光谱信号区域基线拟合算法.首先,利用渐变惯性力和吸引力的思想,针对具有曲率突变的基线提出了GradSuck拟合算法,该算法弥补了多项式拟合算法在信号区域周围基线曲率发生突变时拟合基线不准确的不足;然后将这种算法与分段二次多项式拟合算法进行结合,提出了更具有普适性的信号区域基线拟合算法,同时将该算法与不同的基线拟合算法做了对比.实验结果表明,信号区域基线拟合算法在不同的基线类型和不同的信噪比下均具有较高的准确性和稳定性,其总体拟合精度的相对误差仅为分段二次多项式拟合的47.0%,为AirPLS拟合的35.6%,为Wavelet拟合的20%,且由于只对光谱信号区域进行基线拟合,因此具有较好的实时性.
信号区域 基线拟合 基线畸变 二次多项式拟合 分段拟合 曲率突变 Signal region Baseline fitting Baseline distortion Quadratic polynomial Piecewise fitting Abrupt curvature 
光子学报
2020, 49(12): 105
作者单位
摘要
华北电力大学 电气与电子工程学院, 河北 保定 071003
基于布里渊散射的分布式光纤传感中温度和应变与布里渊频移成线性关系, 为了提高温度和应变测量的准确性, 提出了一种改进的二次多项式拟合算法用于提取布里渊频移。该算法分为两步: 首先使用一种改进的中值滤波算法对含噪布里渊谱信号进行预处理, 以提高增益峰值定位的准确性; 然后截取围绕峰值左右对称的一个线宽的原始布里渊谱进行二次多项式拟合以实现布里渊频移的高精度提取。以布里渊频移误差及峰值定位准确性作为衡量指标, 比较研究后确定同一频率下所有空间点对应的布里渊增益作为滤波器的输入。研究了不同扫频间隔和信噪比及不同滤波窗长下改进算法的效果, 同时研究了最优窗长的选择问题。结果表明, 不同信噪比和扫频间隔下改进算法均能有效提高布里渊频移提取的准确性。随窗口长度增加布里渊频移误差先减少后增加, 在扫频间隔为1~10MHz、信噪比为0~40dB情况下, 通用的最优窗长为53~163。
光纤分布式传感 布里渊频移 二次多项式拟合 中值滤波 去噪 distributed optical fiber sensing Brillouin frequency shift quadratic polynomial fitting median filtering denoise 
半导体光电
2020, 41(3): 406
作者单位
摘要
北京理工大学 机械与车辆学院激光微纳制造研究所, 北京 100081
为了提高光纤布拉格光栅(FBG)温度传感器的测温精度,提出了一种新型的光纤布拉格光栅(FBG)温度传感器的封装方法,并采用二次多项式拟合的方式标定该温度传感器.新的封装方法可以消除FBG温度传感器存在的应力交叉敏感,新的标定方式可以极大地提高光纤温度传感器的测温精度.通过对比光纤温度传感器的线性拟合和二次多项式拟合测温结果,表明这种封装方法结合二次多项式标定使得光纤温度传感器具有很好的稳定性和重复性.在0℃~80℃的温度范围内,曲线拟合度在0.9999以上,测温误差不超过0.13℃,能够满足实际工程应用的需求.
光纤光栅 温度传感器 二次多项式拟合 FBG temperature sensor quadratic polynomial fitting 
光学技术
2015, 41(1): 3

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!