作者单位
摘要
1 福州大学 先进制造学院,福建 泉州 362252
2 中国福建光电信息科学与技术实验室,福建 福州 350116
针对反射式显示器彩色电润湿电子纸在不同色温环境光下显示颜色不一致,影响显示图片色彩还原度的问题,提出一种基于彩色电润湿电子纸光谱反射率特性的色彩校正方法。通过彩色电润湿电子纸的光谱反射率特性,得到不同色温环境光下显示颜色的光谱对应关系,以此建立不同色温环境光下彩色电润湿电子纸显示颜色的映射关系,并根据该映射关系对输入颜色数据进行校正,从而减小不同色温环境光下显示颜色的色差。设置标准光源A(5 000 K)、实验光源B(3 500 K)和实验光源C(6 500 K)对样品进行测试。在两个实验光源下,测量100个测试色块在经过本文方法校正前后的色度数据。实验结果表明,校正前后显示颜色与标准光源下显示颜色的平均色差分别减小了55%和35%,校正后的显示图像平均主观评价Z得分分别为0.45和0.25。
彩色电润湿电子纸 环境光 色差 光谱特性 色彩校正 electrowetting display ambient light color difference spectral properties color correction 
液晶与显示
2024, 39(1): 32
作者单位
摘要
贵州师范学院 物理与电子科学学院,贵州 贵阳 550018
酒精浓度的非接触式测量是一种新型的测量方法。对一些特殊行业有着很大的帮助,比如酿酒业测量酒的酒精浓度,工业上生产工业酒精等。为了便于测量不能接触的酒精溶液,文中设计了一种基于近红外吸收光谱特性的酒精浓度测量系统,可以对不同浓度的酒精溶液进行非接触式连续测量。对于酒精来说,在1300~1 350 nm的光谱段浓度定性反应非常明显,使用处于该波段的红外LED发光二极管,加上光电二极管、模数转换芯片、单片机和LCD屏幕组成该系统。通过使用该系统对不同浓度的酒精进行测量,利用最小二乘法找到酒精浓度和电压信号之间的函数关系式。这样就能通过测量电压值来反推出酒精浓度值。实验表明,在该红外波段下,采集到的电压值和酒精浓度之间有良好的二次函数关系,拟合优度达到了0.99946。测量结果显示,测量值和标准值之间的相关系数R为0.999911,平均绝对误差为0.64。与传统酒精计的0.5相差不大,重复测量和连续测量的方差分别为0.0044和0.0056,证明了该装置的稳定性和可靠性符合预期。而且通过优化电路和程序,选择更为精确的酒精计作为标准,可以使误差更小。该方案相比传统测量方法结构简单,速度更快,还可以进行连续测量。在现实生活中,制酒业、医疗行业和工业生产等行业都对于测量酒精浓度有着很高的需求。该装置可以在不损坏产品的情况下进行酒精浓度测量,它的连续检测能力对某些行业的批量生产有着很大的帮助。通过改良,可以实现自动化检测。除了企业生产,也可用于制造日常使用的便携式酒精浓度测量仪。
酒精浓度测量 近红外吸收光谱特性 非接触测量 光电二极管 红外LED光源 measurement of ethanol concentration near infrared spectrometry characteristics non-contact measurement photodiode infrared LED light source 
红外与激光工程
2023, 52(12): 20230510
作者单位
摘要
1 广东电网有限责任公司电力科学研究院, 广东 广州 510080
2 河南省日立信股份有限公司, 河南 郑州 450001
3 河南省日立信股份有限公司, 河南 郑州 450001郑州大学物理学院, 河南 郑州 450001
1, 1, 1, 3, 4, 4, 4-7氟-3-(3氟甲基)-2-丁酮(C5-PFK)气体因其优良的电气绝缘性能和良好的环保特性受到国内外广泛关注。 制备高精度的C5-PFK混气并实现对其混合比的精准检测, 有利于对C5-PFK混气的科学论证, 最大限度的减少电力隐患。 采用FTIR实验, 结合B3LYP方法进行光谱理论计算, 对C5-PFK气体的红外光谱吸收特性进行了研究; 针对测试环境中可能存在的CO2及微水气体, 在相同的温压及光程条件下进行了谱线交叉干扰分析; 基于非分散性红外线(NDIR)技术对C5-PFK混气混合比传感器进行了仿真测试, 开展了传感器硬件系统的整体设计。 根据传感器的输出特性, 建立了BP神经网络温度补偿模型, 并对传感器的重复性及示值误差进行了测试。 结果表明: C5-PFK气体的强吸收峰位置分别为1 200、 1 262及1 796 cm-1, 分子理论计算与气体实测的红外光谱吻合较好; 合成空气背景下1 262 cm-1位置CO2气体的吸光度为6.04×10-7, 150 nm滤波带宽内微水峰面积影响因子约为3.15×10-3, 谱线交叉干扰可忽略不计, 采用NDIR技术选择1 262 cm-1位置实现混合比检测切实可行; 以量程追踪光程, 传感器仿真测试结果显示6.5 mm光程可实现0~15%的C5-PFK混气混合比的检测。 传感器输出特性显示: 吸收变量SA/SB值随温度的升高而减小, 呈现非线性关系; 10%的C5-PFK/Air混气在BP神经网络算法温度补偿前后最大示值误差分别为29.23%及1.29%, 补偿后输出吸收变量SA/SB值基本保持不变; 传感器重复性测试显示RSD为0.27%, 小于3%; 不同浓度对应的传感器示值的线性拟合系数R2为0.999, 最大示值误差为2.47%。 综上, 验证了该检测方法及其传感器在C5-PFK气体混合比检测范围、 抗干扰能力及可靠性等方面优势, 为C5-PFK混气电气设备混合比检测提供一种可行的解决方案。
1, 1, 1, 3, 4, 4, 4-7氟-3-(3氟甲基)-2-丁酮 红外光谱特性 非分散红外技术 双波长红外差分 仿真测试 传感器输出特性 温度补偿 1, 1, 1, 3, 4, 4, 4-heptafluoro-3-(trifluoromethyl Infrared spectral characteristics NDIR technology Dual wavelength infrared difference Simulation test Sensor output characteristic Temperature compensation 
光谱学与光谱分析
2023, 43(12): 3794
作者单位
摘要
1 陆军装甲兵学院士官学校, 吉林 长春 130017
2 长春理工大学物理学院, 吉林 长春 130022
3 陆军装备部驻沈阳地区军事代表局驻沈阳地区第二军事代表室, 辽宁 沈阳 110020
4 长春理工大学光电工程学院, 吉林 长春 130022
由于飞秒激光脉冲宽度小于靶材电子—晶格热弛豫时间, 飞秒激光烧蚀靶材过程以及诱导击穿产生的等离子体膨胀动力学过程与纳秒激光作用过程不同, 因此研究飞秒激光诱导等离子体发射光谱特性对于研究飞秒激光烧蚀机制以及飞秒激光诱导等离子体的膨胀动力学过程非常重要。 Ge材料是一种常用的中远红外探测器以及光学元器件材料, 对中心波长为800 nm, 脉宽为50 fs的激光脉冲烧蚀空气中Ge靶材产生的等离子体发射光谱强度的时间和空间演化规律研究, 并探讨了飞秒激光脉冲能量对等离子体发射光谱强度的影响规律。 实验结果表明在等离子体羽膨胀初期, 飞秒激光诱导Ge等离子体发射光谱主要由线状光谱和连续光谱构成, 在200 ns时间内连续光谱强度逐渐减弱, 线状光谱开始占主导地位。 通过探测Ge等离子体的时间分辨发射光谱, 随着等离子体的快速膨胀, 等离子体发射光谱强度随着时间的增加呈现先增加后下降变化, 在335 ns达到最大。 通过探测Ge等离子体的空间分辨发射光谱, 随着距离Ge靶材表面的位置增加, 等离子体发射光谱强度随远离Ge靶材表面距离增加呈现先增加后下降变化, 在0.8 mm位置达到最大。 由于存在等离子体自吸收机制, 等离子体发射光谱强度随着脉冲能量的增加而增加, 在脉冲能量为0.627 mJ时, 飞秒激光诱导Ge等离子体存在自吸收现象, 从而使等离子体发射光谱强度出现下降变化。
飞秒激光 锗等离子体 光谱特性 自吸收现象 Femtosecond pulse laser Ge plasma Spectral characteristics Self-absorption 
光谱学与光谱分析
2023, 43(7): 2095
作者单位
摘要
成都精密光学工程研究中心, 四川 成都 610041
研究了经过CO2激光处理的溶胶-凝胶SiO2薄膜的物理化学性能和抗激光损伤性能, 研究结果表明激光处理后薄膜表面变得更加光滑, 粗糙度从14.08 nm降低到9.76 nm, 下降了30%以上; 薄膜的厚度随着CO2激光处理功率增加有所降低, 经过20 W激光处理后薄膜的厚度下降了17%~28%, 而薄膜的弹性模量和硬度等力学性能获得提升, 弹性模量从1.5 GPa增加到6 GPa, 硬度从40 MPa增加到110 MPa; 傅里叶变换红外光谱测试结果表明激光处理后薄膜的傅里叶光谱峰值从1 125 cm-1 移动至1 120 cm-1, 薄膜中的硅原子和氧原子的平均桥键角变小, 原因为CO2激光处理时会使局部温度升高, 会加速Si—OH键脱水缩合, 孔隙率降低, 吸收下降。 采用紫外纳秒激光对薄膜进行损伤测试, 结果显示经过12 W CO2激光处理后的薄膜与未经过CO2激光处理的薄膜相比损伤面积更小, 而损伤阈值从4.8 J·cm-2上升到7 J·cm-2, 提升了46%; 经过16 W和20 W CO2激光处理的薄膜紫外纳秒激光损伤阈值没有明显变化, 原因为较高功率CO2激光处理导致薄膜表面发生烧蚀沉积, 沉积物会影响紫外纳秒损伤阈值无法有效改善薄膜的激光损伤性能。 研究结果表明CO2激光处理技术可以有效改善溶胶-凝胶SiO2薄膜的弹性模量、 硬度等力学性能和抗激光损伤性能, CO2激光的功率对薄膜性能影响较大, CO2激光处理是一种有效的提升溶胶-凝胶SiO2薄膜紫外纳秒激光损伤特性的技术手段。
CO2激光 溶胶-凝胶薄膜 激光处理 光谱特性 紫外纳秒激光损伤 CO2 laser Sol-gel film Laser conditioning Spectral characteristics Laser induced damage 
光谱学与光谱分析
2023, 43(6): 1752
作者单位
摘要
1 太原师范学院 物理系 山西 晋中 030619
2 山西大学 科学技术史研究所 山西 太原 030006
里德堡原子是主量子数(n)很大的高激发态原子, 由一个或者多个里德堡原子形成的里德堡分子具有大的尺寸, 丰富的振转能级, 永久的电偶极矩以及对外场非常敏感等特性, 不仅包含了里德堡原子的奇异特性, 而且在量子信息存储和量子模拟以及在医学中具有广泛的应用价值, 引起了国内外学者的研究兴趣。根据束缚机制的不同, 里德堡原子形成不同种类的里德堡分子, 目前包括里德堡电子与基态原子低能电子散射形成的基态-里德堡分子、里德堡原子间电多极相互作用形成的里德堡-里德堡分子和离子与里德堡原子间电多极相互作用形成的离子-里德堡分子。本文综述了近年来双原子里德堡分子的研究进展, 包含三类里德堡分子的形成机制、实验观测及其光谱特性等。
里德堡分子 绝热势能曲线 光缔合光谱 光谱特性 Rydberg molecule adiabatic potential energy curve photonassociation spectrum spectral characteristics 
量子光学学报
2023, 29(1): 010002
作者单位
摘要
1 中南林业科技大学机电工程学院,湖南 长沙 410018
2 中南大学机电工程学院,湖南 长沙 410083
3 中南大学高性能复杂制造国家重点实验室,湖南 长沙 410083
利用飞秒激光相位掩模加工方法制造光纤布拉格光栅(FBG),并研究了激光能量和曝光时间对FBG波长、反射率和带宽的影响规律。研究发现,随着曝光时间的增加,光纤的折射率调制量逐渐变大,耦合效率增大,反射率逐渐变大。当光纤耦合效率达到饱和时,反射率保持不变;当过曝光时,反射率轻微减小,光纤的平均有效折射率和折射率调制深度均变大,带宽增大。随着激光能量的增大,达到最大反射率所需要的曝光时间缩短,且FBG波长的红移量越多,带宽就越大。过大的激光能量会使平均有效折射率和折射率调制深度变大,从而导致FBG主谐振峰两边的旁瓣增多,影响光谱质量。另外,短波方向旁瓣的振荡比较显著,而长波方向则比较平顺。因此,在实际加工中需要选择合适的激光曝光能量和曝光时间。实验获得的最大FBG反射强度达到15 dB,且其光谱变化和理论分析一致。该研究为高质量FBG的制造和光谱特性优化提供了实验依据。
光纤光学 光纤布拉格光栅 飞秒激光 相位掩模法 光谱特性 带宽 
中国激光
2023, 50(19): 1906001
作者单位
摘要
华南理工大学 发光材料与器件国家重点实验室,广东省光纤激光材料与应用技术重点实验室,广东 广州 510640
掺稀土激光玻璃是光纤激光器的核心工作介质,如何定量计算预测激光玻璃的光学光谱特性是加快高性能激光玻璃研发的挑战之一。本文以掺铥(Tm3+)二元锗酸盐激光玻璃为例,将相图中的“一致熔融化合物”视为玻璃的组成/结构“基元”,基于掺Tm3+基元玻璃的物理和光谱性质的实验值利用杠杆规则计算预测了锗酸盐激光玻璃相应的性质,如密度、折射率、有效线宽、吸收/发射截面、辐射寿命、增益带宽等。结果表明,物理性质和光谱特性的预测值与实验值吻合度较高,预测误差绝对值分别小于4.61%和9.66%。此外,该方法能够准确预测掺Tm3+锗酸盐玻璃的物理性质和光谱特性随组分的变化趋势,包括线性规律和“锗反常”现象,有助于解析激光玻璃组成?结构?性质的内在关联。本研究有望为激光玻璃的性质预测和成分设计提供指导。
激光玻璃 光谱特性 定量预测 相图模型 laser glass spectroscopic properties quantitative prediction phase diagram model 
发光学报
2023, 44(5): 889
作者单位
摘要
1 新疆师范大学物理与电子工程学院, 新疆发光矿物与光功能材料研究重点实验室, 新疆 乌鲁木齐 830054
2 新疆计量测试研究院, 新疆 乌鲁木齐 830011
对二溴苯(C6H4Br2)在化学工业领域有着广泛的应用, 但也是威胁臭氧层的有机污染物之一, 研究外电场作用下该分子的解离特性对臭氧层的保护具有重要参考价值。 在不同外电场(-0.025~0.025 a.u.)作用下, 采用密度泛函理论(density functional theory, DFT), B3LYP/6-311+G(d, p)基组水平上优化了对二溴苯分子的基态几何结构; 采用含时密度泛函理论(time-dependent density functional method, TD-DFT)和B3LYP/6-311+G(d, p)基组计算了分子的紫外吸收光谱, 推测分子的解离特性; 对分子两个C-Br键的势能进行扫描, 给出了对二溴苯分子解离特性的直接证据。 研究表明, 在外电场作用下, 对二溴苯分子的基态几何结构、 光谱特性、 势能曲线及势能面均发生较大改变。 随着外电场的增加, 对二溴苯分子的3C-12Br键长、 分子体系总能量均逐渐降低, 6C-11Br键长、 偶极矩逐渐增大; 6C-11Br键长的增大, 说明对二溴苯分子的6C-11Br键能减小, 6C-11Br键更容易断裂。 能隙随外电场增强先增大后减小, 能隙的减小, 说明分子更容易发生化学反应。 C-Br键伸缩振动峰强度逐渐减小, 紫外吸收光谱吸收峰强度先略微增大后猛然降低, 红外光谱的振动频率和紫外吸收光谱的最强峰均发生了红移, 表现出分子能量增强的特性, 表明振动加强, 化学键变得更活跃。 在外电场作用下扫描了对二溴苯分子的3C-12Br键, 得到了分子3C-12Br键的势能曲线, 当外电场强度为-0.02 a.u.时, 分子右侧势垒的最高能量与最低能量基本相平, 分子3C-12Br键断裂; 在此电场强度下继续扫描6C-11Br的势能发现, 分子6C-11Br键也会断裂, 因此对二溴苯分子可以发生逐步解离。 在外电场作用下同时扫描对二溴苯分子的两个C-Br键, 得到分子的势能面, 当外电场强度为0.02 a.u.时, 势能面的对角线势能降低, 出现另一个解离通道, 因此对二溴苯分子可能发生协同解离。 上述结果为实验研究对二溴苯分子的外电场降解机理提供数据保障, 也对该分子体系的解离特性研究有重要的参考意义。
密度泛函理论 对二溴苯 光谱特性 解离特性 外电场 Density functional theory P-dibromobenzene Spectral characteristic Dissociation characteristic External electric field 
光谱学与光谱分析
2023, 43(2): 405
蒋晓琦 1,2,*孙焰 1王亚飞 1王欣 1[ ... ]郭爱民 3
作者单位
摘要
1 中国科学院上海光学精密机械研究所,高功率激光单元技术实验室,上海 201800
2 上海大学,材料科学与工程学院,上海 201900
3 中信金属股份有限公司,北京 100004
蓝光激光器在彩色激光显示、高密度光储存、海洋资源探测、水下通信以及生物科技等领域具有广泛的应用前景。目前较为成熟的Yb3+掺杂光纤激光器倍频后仅能获得~490 nm蓝绿光,因此如何得到接近450 nm的纯蓝光激光器是目前急需解决的问题。Nd3+:4F3/2→4I9/2能级跃迁产生的0.9 μm光经倍频后可获得~450 nm光,并可应用于蓝光激光器,但该跃迁产生的光所占荧光分支比较低。本文系统研究了1%(质量分数)Nd2O3掺杂50GeO2(20-x)PbO15BaO15ZnOxNb2O5(x%=0%,2.5%,5%,10%,15%,摩尔分数)玻璃的吸收光谱、荧光光谱和荧光寿命,计算了相应的JuddOfelt强度参数以及增益带宽。研究发现,Nb2O5的加入会使Nd3+在900 nm荧光峰的吸收截面、发射截面、有效线宽和荧光分支比增加。当Nb2O5浓度为10%(摩尔分数)时,JuddOfelt强度参数Ω2=5.91×10-20 cm2,光谱质量参数χ=1.01,荧光分支比为42.9%。综上所述,Nb2O5能提高Nd3+ 0.9 μm的荧光分支比,从而倍频获得纯蓝光(450 nm),有利于蓝光激光器的发展及应用。
Nb2O5浓度 锗酸盐玻璃 光谱特性 JuddOfelt强度参数 ~0.9 μm荧光 Nd3+ Nd3+ Nb2O5 concentration germanate glass spectral property JuddOfelt intensity parameter ~0.9 μm fluorescence 
硅酸盐通报
2022, 41(11): 3768

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!