作者单位
摘要
厦门大学航空航天学院,福建 厦门 361102
气囊抛光可用于加工具有纳米级表面粗糙度和亚微米级形状精度的非球面光学元件,在光学元件加工领域应用广泛。传统气囊工具磨损检测方法成本高、耗时长、效率低,针对该问题,提出一种基于拼接数据采集平台的改进迭代最近点(ICP)拼接算法的气囊磨损检测方法。该方法通过点云拼接实现大尺寸气囊工具的磨损检测,并结合气囊磨损检测算法计算磨损量。采用体素下采样和半径滤波对拼接数据进行点云预处理,利用搭建的拼接检测数据采集平台获取良好的初始配准变换矩阵,最后利用双向K-D树近邻搜索结合ICP算法实现点云精配准。实验结果表明,所提拼接算法在保证配准精度的同时可大幅提高配准效率,并且不影响后续气囊磨损检测的精度,为大尺寸气囊工具磨损检测提供了保证。
气囊抛光 气囊磨损检测 数据采集 点云配准 
激光与光电子学进展
2023, 60(16): 1612001
作者单位
摘要
1 吉林大学 机械与航空航天工程学院,吉林 长春 130025
2 中国科学院长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
为提高离轴三反消像散(TMA)光学系统中次镜的制造效率和精度,开展了离轴凸非球面反射镜组合加工和零位检测的研究工作。首先,介绍了方形(298 mm×264 mm)高次离轴凸非球面反射镜的光学参数、技术指标和总体加工路线;其次,提出了铣磨加工工艺策略以及基于气囊和沥青的小磨头组合加工工艺;最后,阐述了光学零件抛光阶段采用的背部透射零位补偿检测法和Offner型零位补偿器,并采用光线追迹法对镜片的零位补偿检验面形畸变进行了矫正,最终面形RMS值为0.025λλ=632.8 nm),满足技术指标要求。上述组合加工工艺和背部透射零位补偿检测方案可以显著提升高次离轴凸非球面反射镜的加工精度和效率。
离轴凸非球面 气囊抛光 沥青平滑 零位补偿 畸变矫正 off-axis convex aspheric bonnet polishing pitch smoothing null lens testing distortion correction 
红外与激光工程
2022, 51(9): 20220611
作者单位
摘要
1 厦门大学 航空航天学院,福建 厦门 361005
2 厦门大学 深圳研究院,广东 深圳 518000
针对六自由度串联式关节机器人气囊抛光系统因刚度不足引起的加工振动以及引入中频误差的问题,以IRB 6700机器人作为研究对象,基于Ansys Workbench建立模态分析模型,并结合实验分析机器人气囊抛光系统工况频带内动态特性,实验与仿真结果共同表明,机器人气囊抛光系统在工况频带至少存在5阶模态,且共振时机器人末端抖动幅值为mm级,机器人加工严重受限。同时针对机器人气囊抛光系统先进光学元件抛光工艺应用,设计一种阻尼抑振气囊工具头,与普通气囊工具头进行定点抛光与整面抛光对比实验。结果表明:抑振气囊头定点抛光斑粗糙度与频谱幅值普遍低于普通气囊工具头,引入的中频误差较一般气囊工具头低40%,抛光优化效果显著。
气囊抛光机器人 中频误差 模态分析 光学元件抛光 bonnet polishing robot mid-spatial-frequency errors modal analysis optical element polishing 
强激光与粒子束
2022, 34(11): 119001
作者单位
摘要
1 厦门大学 机电工程系,福建 厦门 361005
2 厦门大学 深圳研究院,广东 深圳 518057
基于气囊抛光技术和工业机器人平台开发光学元件精密抛光系统,既能满足光学元件快速抛光环节的高效率和高精度的要求,又可以降低开发成本,是极具潜力的抛光设备开发方案。气囊抛光具有稳定的且确定的材料去除特性,通常要求抛光斑稳定性在90%左右。针对机器人气囊抛光系统在多步离散进动抛光过程中机器人末端刚度对气囊抛光稳定性的影响展开研究,通过建立机器人末端刚度矩阵,获得机器人末端变形;基于Preston理论,建立含变形误差的气囊抛光去除函数。最后设计4步离散定点抛光实验验证机器人气囊抛光系统稳定性。根据结果可知抛光斑在XY截面轮廓线上皆呈类高斯形状,且XY截面轮廓线基本一致,具有比较好的重合度;对比不同抛光位置的截面轮廓线,其相对误差小于5%,由此可验证机器人气囊抛光系统在离散进动抛光时具有较好的稳定性。
气囊抛光 工业机器人 刚度矩阵 去除函数 抛光实验 bonnet polishing industrial robot stiffness matrix removal function polishing experiment 
强激光与粒子束
2021, 33(5): 051002
作者单位
摘要
天津津航技术物理研究所,天津 300380
单点金刚石车削技术已经广泛应用于高精度光学表面的制造,然而其残留在被加工表面的微纳织构将会影响部分光学系统的性能,需要光滑去除。文中对单点金刚石车削刀痕的抛光去除技术进行了研究,发现抛光方向与刀痕垂直时刀痕去除效率最高。基于此,提出了一种螺旋正弦抛光运动轨迹,介绍了螺旋正弦运动轨迹的设计原则,并应用气囊抛光的方式与螺旋式和光栅式运动轨迹进行了对比抛光实验,证明此运动轨迹下微纳织构的改善效果明显优于其他两种方式。最后应用螺旋正弦运动轨迹对一锗材料单点金刚石车削非球面进行了抛光光滑处理,在保持了面形精度的前提下,表面糙度Ra由1.28 nm降低到0.4 nm,规律性微纳刀痕变为随机织构,达到了表面织构改善的目的。
单点金刚石车削刀痕 螺旋正弦轨迹 气囊抛光 去除 single point diamond turing marks spiral sine trace bonnet polishing removal 
红外与激光工程
2020, 49(7): 20200212
钟波 1,2陈贤华 1王健 1周炼 1[ ... ]邓文辉 1
作者单位
摘要
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 电子科技大学 机械电子工程学院, 四川 成都 610054
针对强激光系统所需大口径非球面元件高精度、批量化的加工需求, 提出了一种气囊抛光技术与柔性沥青小工具抛光技术相结合的大口径非球面元件高效制造方法。采用气囊抛光技术进行非球面保形抛光和快速修正抛光, 实现磨削缺陷层快速去除以及低频误差快速修正。采用柔性沥青工具匀滑抛光技术, 在低频误差不被恶化的情况下, 控制元件中高频误差。在抛光过程中, 利用球面干涉仪搭建的自准直波前干涉检测系统和粗糙度仪对非球面元件进行全频段误差检测。基于上述加工与检测方法完成了430 mm×430 mm口径离轴非球面透镜样件实验加工, 实验结果为元件通光口径内透射波前PV=0.1λ, GRMS=5.7 nm/cm, PSD1 RMS=1.76 nm, PSD2 RMS=1 nm, Rq=0.61 nm, 并且中频段功率谱密度曲线均在要求的评判曲线之下。实验结果表明, 离轴非球面透镜样件全频段指标均达到了合格指标要求。所述制造方法也适用于其他类型大口径非球面光学元件的高精度加工。
先进光学制造 全频段误差 气囊抛光 沥青抛光 advanced optical manufacturing full frequency error bonnet polishing pitch polishing 
红外与激光工程
2018, 47(7): 0718003
作者单位
摘要
国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室 超精密光学工程研究中心,吉林 长春130033
本文提出一种高精度非回转对称非球面加工方法。首先, 通过范成法铣磨出非回转对称非球面的最佳拟合球; 然后, 利用古典抛光修正小磨头确定抛光难以修正的中频误差; 最后, 利用高精度气囊抛光设备(IRP)精确对位精修面形, 在不引入额外中频误差条件下, 通过高精度对位检测技术实现非回转对称非球面高精度加工。将该方法应用于定点曲率半径为970737 mm、k=-1、口径为106 mm三次非球面加工, 降低了加工难度, 提高了加工精度, 面形误差收敛到1/30λ(RMS)。实验结果验证了本文加工方法的正确性和可行性, 对高精度非回转对称非球面加工具有一定的指导意义。
非回转对称 非球面 气囊抛光 IRP抛光 non-rotationally symmetrical aspheric surface bonnet polishing IRP polishing 
中国光学
2016, 9(3): 364
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 应用光学国家重点实验室 超精密光学工程研究中心, 吉林 长春 130033
针对用于球面、非球面光学元件超精密光学加工的气囊抛光技术, 提出了一套控制抛光过程中气囊运动精度的方法。该方法通过控制加工单元的温度, 保证抛光过程中设备运动精度达到50 μm; 使用坐标传递法, 使检测数据二维方向对准不确定度达到0.30~0.70 mm。另外, 基于磨头去除量估计与反馈修正法, 提高精抛过程面形误差收敛效率。最后, 通过磨头探测校准法, 将磨头与加工工件法向位置精度提高至10 μm。实际抛光实验显示: 使用运动精度控制法在280 mm口径的平面精密抛光中获得的面形加工精度为0.8 nm(RMS), 在160 mm口径的凹球面精密抛光中获得的面形加工结果为1.1 nm(RMS), 实现了超高精度面形修正的目的, 为超高精度球面、非球面光学元件加工提供了一套行之有效的方法。该方法同样适用于其他接触式小磨头数控抛光方法。
光学加工 气囊抛光 运动精度 球面抛光 平面抛光 optical manufacture bonnet polishing motion precision sphere polishing flat polishing 
光学 精密工程
2015, 23(8): 2220
作者单位
摘要
1 天津津航技术物理研究所, 天津 300380
2 香港理工大学工业及系统工程学系超精密加工技术国家重点实验室, 香港 00852
单点金刚石车削技术被广泛应用于光学表面的超精密加工。然而,车削表面固有的周期性残留刀痕结构将增强表面散射效应,恶化元件光学性能。为了抑制散射以获得高质量光学表面,采用气囊抛光技术主动改变车削表面周期性刀痕结构。基于Taguchi正交试验,以表面粗糙度及功率谱密度的改善率为设计指标,分析获得了最优抛光参数。采用该最优参数对一精车表面进行了抛光试验,抛光后表面粗糙度Ra 由3.81 nm 降到1.42 nm,各空间频率功率谱密度大幅降低,同时表面的衍射条纹消失。试验结果验证了所采用的抛光及相应优化方法的有效性,具有重要的工程应用价值。
光学制造 金刚石车削 表面微观形貌 气囊抛光 参数优化 
光学学报
2015, 35(3): 0322001
作者单位
摘要
北京航空精密机械研究所 精密制造技术航空科技重点实验室, 北京 100076
提出了一种新的进动气囊抛光驻留时间算法, 用于实现高精度的光学玻璃零件的加工。首先, 通过抛光工艺试验确定抛光去除率函数; 在矩阵迭代算法的基础上, 给定一个合适的驻留时间初值函数。然后, 采用分层阈值去除法进行驻留时间的优化求解, 并加上残余误差方差最小的判定条件, 从而得到完整的驻留时间函数。该算法适用于非球面、自由曲面等光学玻璃元件的抛光加工。用MATLAB对残余面形误差进行了仿真, 仿真结果表明残余误差精度PV值可以收敛到0.1 μm左右。最后, 对光学玻璃平面进行了抛光。实际抛光后, 该玻璃表面粗糙度Ra从抛光前的0.159 μm减小到0.024 μm, 面形精度PV值由抛光前的0.756 μm减小到0.158 μm。得到的结果验证了提出驻留时间算法的合理性, 表明该算法可为以后进行复杂面形工件的气囊抛光研究提供理论基础。
光学玻璃 进动气囊抛光 驻留时间算法 矩阵迭代 残余误差 optical glass precession bonnet polishing dwell time algorithm matrix iteration residual error 
光学 精密工程
2014, 22(12): 3303

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!