作者单位
摘要
蓝上海工程技术大学材料工程学院, 上海 201620
针对焊接电弧二维光谱检测温度场研究的局限性, 在以共聚焦光路为关键的三维光谱检测系统基础上, 检测到了三维电弧内部任意一点的光辐射强度。 以电弧内部垂直于光谱检测方向且过电弧轴中心的各点的光辐射强度, 通过借鉴Abel逆变换进行抗干扰解耦, 恢复了电弧内部任意一点光辐射强度的相对发射系数, 以解决所提出的三维光谱检测系统对电弧内部任意一点进行聚焦光谱检测的干扰问题。 根据恢复得到的焊炬高度为2 mm的2 A微束等离子弧焊电弧Ar Ⅱ特征谱线(波长为771.308与856.221 nm)的相对发射系数, 通过相对谱线强度法, 得到电弧的三维温度分布。 进一步讨论了由此得到的电弧温度场分布和电弧形态特征, 并与数值模拟计算得到的相同条件下电弧温度场进行了比较。 研究表明: 该研究提出的三维电弧光谱检测系统能够采集到电弧内部三维空间点的光辐射强度, 虽然受到共聚焦光路的限制, 采集到的电弧径向端面光谱为拖长的非轴对称圆形, 但经过抗干扰解耦后的电弧径向光谱图为轴对称; 虽然抗干扰解耦后得到的电弧光辐射相对发射系数分布出现一定的离轴最大化现象, 但电弧光辐射强度在离轴了的电弧中心处达到了最大值, 该最大光辐射强度从喷嘴至工件呈现先减后增现象, 与电弧轴中心光辐射强度分布呈“双峰”态一致; 并且电弧径向半径从喷嘴至工件是先减小、 再保持、 然后增大, 其形貌为底部呈蘑菇状的准柱形, 也符合相对于2 A焊接电流的短电弧(焊炬高度2 mm)的电弧形态; 同时, 通过电弧三维光谱检测并经过抗干扰解耦间接得到的2 A电弧的最大温度在微束等离子弧焊电弧的温度范围内, 且在归一化后与数值模拟的电弧径向温度场分布较为吻合, 误差较小。
微束等离子弧焊电弧 光谱检测 抗干扰解耦 阿贝尔逆变换 电弧温度场 Arc in micro plasma arc welding Spectrum detection Anti-interference decoupling Abel Inverse Transform Arc temperature field 
光谱学与光谱分析
2020, 40(1): 48
作者单位
摘要
北京工业大学汽车结构部件与先进制造技术教育部工程研究中心, 北京 100124
在电弧等离子体的光谱诊断中, 标准温度法测温原理与目前先进的图像传感技术相结合, 通过特征谱图像完成电弧全场温度信息采集, 因其良好的时、 空分辨率而被广泛应用于电弧温度测量。 但是谱线的发射系数与等离子体温度不是单调变化关系, 传统标准温度法选取一条ArⅠ谱线完成对电弧等离子体的测量, 在电弧内部的高温电离区域产生谱线辐射强度降低的现象, 需要人为判定电弧不同位置所处的温度区间才能完成温度的计算, 整个过程无法通过软件自主完成。 针对此问题, 根据电弧等离子体的局部热力学平衡条件, 探索一种基于双特征谱线的标准温度法测温原理, 通过融合电弧在外层低温区域聚集的Ar原子发出的ArⅠ谱线发射系数场, 和在高温区域的Ar一次电离离子所发出的ArⅡ特征谱线发射系数场, 将达到ArⅠ谱线标准温度的位置处的ArⅡ谱线发射系数作为电弧不同温度区域的判定依据, 完成电弧等离子体高温区域的自动判别, 继而应用ArⅠ谱线发射系数与温度对应关系在电弧高、 低温区域分别计算电弧温度, 消除单一的ArⅠ谱线发射系数场暗区给计算带来的不利影响; 设计并搭建了一种镜前分幅采集系统, 其中分光镜将弧光等能量分成两束, 利用两组反射镜和窄带滤光片建立起两路光学通道, 使CMOS在一次曝光中完成两组电弧特征谱图像的采集, 并且两幅图像的采集时刻、 焦距、 光圈等拍摄参数完全一致, 达到良好的时间、 空间一致性, 从而减小谱线融合时误差的输出, 满足了原位获取两组电弧特征谱图像的需求; 为验证测量系统可行性以及后期的电弧图像提取, 以黑白棋盘为标靶, 用Harris算子对系统采集的图像进行扫描, 根据角点坐标证明系统所采集的两幅图像具有良好的一致性, 并且据此将两幅图像做归一化处理, 以便后期的电弧特征谱图像的提取; 通过假设所测电弧等离子具有轴对称属性, 以CMOS所采集的特征谱图像亮度信息作为电弧发射系数场在不同角度下的投影依据, 经过中值滤波降噪后, 利用ML-EM迭代重建算法求解电弧的三维发射系数分布。 实验中, 选择受自吸收效应影响较小的ArⅠ696.5 nm谱线和ArⅡ480.6 nm谱线为测量目标, 并且在696.5 nm谱线的光通路中加入OD0.4的中性减光片, 使两幅特征谱图像的最高亮度值保持一致。 选取150A焊接等离子弧为测量对象, 经ML-EM法三维还原后, 将两条谱线发射系数场等像素融合, 在ArⅠ谱线发射系数达到最大值的像素点位置处, ArⅡ谱线发射系数达到εrp, 判定ArⅡ谱线发射系数大于εrp的像素点位置为电弧高温区域, 其余位置为低温区域, 最终在不同温度区域自动完成焊接等离子弧的温度计算。 实验结果表明696.5 nm谱线和480.6 nm谱线发射系数场融合后可以自动识别电弧高温区域, 继而完成电弧等离子体的自动测量, 为电弧温度实时监测的实现提供更多可能。
焊接电弧等离子体 标准温度法 电弧温度场 Welding arc plasma Fowler-milne method Arc temperature field 
光谱学与光谱分析
2019, 39(2): 370
肖笑 1,2,*华学明 1,2吴毅雄 1,2李芳 1,2
作者单位
摘要
1 上海交通大学材料科学与工程学院焊接工程技术研究所, 上海 200240
2 上海市激光制造与材料改性重点实验室, 上海 200240
脉冲TIG焊由于其优越的特性而广泛应用于工业中, 准确测量电弧温度对分析焊接过程有重要意义。 论文基于光谱学理论计算了氩元素的粒子数密度与温度之间的关系曲线, 计算了794.8 nm氩原子谱线的发射系数与温度之间的关系曲线, 利用高速摄影获得了794.8 nm特征谱的电弧图像, 根据Abel变换和标准温度法计算了脉冲TIG焊峰值时刻和基值时刻的电弧温度场分布。
脉冲TIG焊 电弧温度场 标准温度法 Pulsed TIG welding Arc temperature Fowler-Milne method 
光谱学与光谱分析
2012, 32(9): 2327
作者单位
摘要
1 南京航空航天大学自动化学院, 南京 210016
2 南昌航空工业学院测控系, 南昌 330034
研究少投影数情况下等离子体温度场重建问题。结合光学层析重建算法及等离子体光谱诊断中的谱线绝对强度法进行自由电弧等离子体温度场重建实验。理论上,详细讨论了一种基于最大熵准则及最优化原理的光学层析图像重建新算法。通过计算机数值模拟,考察了该算法对非对称温度场分布的重建效果。详细分析了投影噪声、投影方向数、场分布性质对重建精度的影响,并与代数迭代重建算法结果进行对比.结果表明,该算法以两个正交方向投影数据重建单峰余弦模拟场平均误差仅为0.03%,而代数迭代重建算法为3.81%;该算法以四个均匀角度间隔投影数据重建三峰随机高斯模拟场平均误差为1.77%,而代数迭代重建算法为2.02%。实验中,运用该算法结合谱线绝对强度法重建了自由电弧等离子体的温度分布。
信息光学 光学层析 电弧温度场 光谱测量 最大熵 
光学学报
2003, 23(12): 1433
作者单位
摘要
南昌航空工业学院, 南昌 330034
结合光栅Talbot效应和莫尔技术,利用有限角计算机层析算法,借助电孤等离子体物理方程,对自由电弧三维温度场进行了诊断研究。
莫尔偏转术 计算机层析技术 电弧温度场 
光学学报
1998, 18(3): 376

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!