作者单位
摘要
1 湘潭大学 自动化与电子信息学院,湖南 湘潭 411105
2 中国科学院 空天信息创新研究院,北京 101407
3 中国科学院大学,北京 100049
波导型高功率微波输能窗是高功率速调管和高能粒子加速器的关键部件,输出窗高频击穿是引起高功率速调管失效的一个重要因素。综述了国内外电真空领域波导型输能窗的研究进展,介绍了传统盒型窗的研究现状、工艺要求和击穿机理;介绍了锥型窗、行波窗、复合模窗以及过模窗等新型输能窗的设计特点,给出了改变窗片材料属性、改变窗片表面形态、窗片边缘倒角、外置直流电场/直流磁场、改变信号波形等击穿抑制技术的研究进展。
高功率微波 速调管 输能窗 盒型窗 行波窗 击穿抑制技术 high-power microwave klystron high-power waveguide window pill-box window travelling wave in ceramic window breakdown suppression technique 
强激光与粒子束
2021, 33(2): 023001
作者单位
摘要
1 电子科技大学 微波电真空器件国家级重点实验室, 四川 成都 610054
2 真空电子技术研究所, 北京 100015
近些年来交错双栅行波管由于其高功率容量和易加工等优点受到了很多的关注.然而随着器件工作频率的升高, 尤其对于太赫兹频段, 结构的损耗严重限制了行波管的性能.本文考虑了损耗和加工所导致的圆角等因素, 针对交错双栅结构提出了一个更切实际的设计.仿真结果表明, 该行波管在320~342 GHz频率范围内能获得大于5 W的输出功率.采用了相速跳变方法来提高输出功率, 在整个工作频带内输出功率都得到了大于28%的提升.在此基础上加工了340 GHz交错双栅慢波结构并开展了冷测实验, 在330~360 GHz范围内盒型窗的S21测试结果大于-2.1 dB且电压驻波比在334~355 GHz范围内小于1.35.同时对包含盒型窗部件的高频系统进行了冷测, 其电压驻波比测试结果在335~344 GHz范围内均小于2, 且该冷测结果与仿真结果之间趋势基本一致.
倒圆角的交错双栅 行波管 损耗 加工 盒型窗 相速跳变 filleted staggered double vane traveling wave tube loss fabrication pillbox window phase-velocity taper 
红外与毫米波学报
2019, 38(3): 303
作者单位
摘要
中国工程物理研究院 应用电子学研究所, 四川 绵阳 621900
为了获得0.22 THz宽带折叠波导行波管,对行波管的慢波结构和输入输出窗结构进行了宽带设计。通过理论分析和电磁仿真计算出合适的参数,使慢波结构在0.22 THz工作点附近的色散曲线平坦,耦合阻抗变化小,模拟计算得到的慢波结构3 dB带宽大于16 GHz;通过对盒型窗结构及匹配段的优化计算,得到的输入输出结构在大于30 GHz范围内S11参数小于-25 dB。根据该设计进行了两轮制管和实验研究,得到了一支3 dB瞬时带宽约8.8 GHz,另一支3 dB瞬时带宽大于12 GHz的0.22 THz折叠波导行波管,中心频率的峰值功率大于400 mW。
太赫兹 折叠波导 盒型窗 行波管 带宽 THz folded-waveguide RF window travelling wave tube bandwidth 
强激光与粒子束
2015, 27(11): 113102
作者单位
摘要
电子科技大学 物理电子学院, 四川 成都 610054
在传统的场匹配理论的基础上建立起盒型窗的通用传输参数矩阵, 并提出了一种新型的混合模式传输方法来扩展盒型窗带宽.在研究结果的基础上, 通过理论分析和数值计算得到了能满足Q波段超宽带带状束行波管所需求的新型混合模式传输盒型窗的初始结构和尺寸、利用三维高频分析软件HFSS优化并得到了最终结构参数.通过仿真验证和热分析, 证明了新的混合模式紧凑型盒型窗在34~52GHz频带内平均功率容量达到10kW、反射系数小于-18dB、相对带宽超过40%.冷测实验结果证实了盒型窗在要求带宽内反射系数均小于-18dB, 能满足实际器件的指标要求
带状束 超宽频带 混合传输模式 盒型窗 sheet beam extremely broad bandwidth hybrid transmission mode pill-box window 
红外与毫米波学报
2015, 34(3): 368

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!