作者单位
摘要
1 中国工程物理研究院 应用电子学研究所, 四川 绵阳 621900
2 中国工程物理研究院 研究生院, 北京 100088
为了实现高功率微波发生器的小型化, 开展了S波段低磁场相对论返波振荡器工作特性的研究工作。由于S波段返波振荡器频率低, 对应的电子回旋共振磁场强度也很低, 因此低磁场条件下面临着电子束传输效率低和束波互作用效率低两大问题。为解决上述问题, 采取下列措施: 通过加大电子束与器件内壁的距离, 提高电子束传输效率; 采用较深的慢波结构作为提取腔, 实现高束波互作用阻抗; 提取腔前采用浅深度慢波结构, 使提取腔区域的电子速度与微波相速同步。粒子模拟证明, 以上措施有效, 在引导磁场强度仅为0.17 T、电子束电压435 kV、电流6.5 kA的条件下, 该返波管获得功率为670 MW、效率约为25%的输出微波。相对于常规S波段相对论返波振荡器的磁场系统(B=0.8 T), 适用于该返波管的0.17 T低强度磁场系统螺线管外半径下降了20%, 能耗下降了约93.8%。
高功率微波 相对论返波振荡器 低引导磁场 特殊慢波结构 电子回旋共振 high power microwave relativistic backward wave oscillator low guiding magnetic field special slow wave structure electron cyclotron resonance 
强激光与粒子束
2019, 31(3): 033001
作者单位
摘要
国防科学技术大学 光电科学与工程学院, 长沙 410073
基于P波段新型三周期慢波结构同轴相对论返波振荡器设计思想,设计了一个L波段同轴相对论返波振荡器。粒子模拟表明,在二极管电压591 kV、电流8.2 kA、导引磁场0.8 T时,获得了1.50 GW的微波输出,频率为1.64 GHz,效率达31%,器件慢波结构尺寸仅为96 mm×207 mm。分析了该器件实际高频结构的电动力学特性,重点研究了纵向谐振模式、品质因数等特点,并结合P波段的研究结果,得到了该类器件的相关设计指标:慢波结构长度约为一个波长,波纹周期约5/13波长,外波纹深度约1/10波长,内波纹深度约1/30波长,电子束半径约0.7倍外波纹平均半径,器件的纵向工作模式为0.8π模,对应的Q值约16。
高功率微波 相对论返波振荡器 同轴慢波结构 低频段 纵向谐振模式 high power microwave relativistic backward wave oscillator coaxial slow wave structure low-band longitudinal resonant mode 
强激光与粒子束
2012, 24(4): 971
作者单位
摘要
1 国防科学技术大学 光电科学与工程学院, 长沙 410073
2 第二炮兵青州士官学校 基础部, 山东 青州 262500
提出了一种新型的中等能量P波段相对论返波振荡器,该器件将慢波结构由低波段普遍采用的同轴外波纹结构变为同轴双波纹结构,使得径向束-波作用空间扩大了2倍,一定程度上增加了器件的功率容量;另外同轴双波纹结构还较大提高了器件的时间增长率,从而有效地减小了微波输出饱和时间。经优化设计,该结构在二极管电压300 kV、电流3 kA、导引磁场1.0 T的情况下,获得267 MW的微波输出,效率达30%,频率为867 MHz。
高功率微波 P波段 相对论返波振荡器 同轴慢波结构 粒子模拟 high power microwave P-band relativistic backward wave oscillator coaxial slow wave structure particle-in-cell simulation 
强激光与粒子束
2011, 23(11): 3059
作者单位
摘要
国防科学技术大学 光电科学与工程学院, 长沙 410073
研究了一种能够同时产生C波段和X波段微波、具有双电子束结构的相对论返波振荡器,采用嵌套式的高频结构将两个波段的束波相互作用空间隔离开来,从而使两个波段的束波相互过程互不影响。当二极管电压为650 kV、内外环形电子束流分别为5.4,6.4 kA、导引磁场为2.2 T时,两个波段微波的频率分别为4.625,8.450 GHz,模拟产生的微波功率分别为920,600 MW,转换效率约为21.8%,17.1%。并采用粒子模拟法研究了导引磁场、二极管电压及两个束波相互作用区关键结构参数对器件运行的影响,给出了双波段微波功率、频率随导引磁场、二极管电压等参数的变化曲线。
相对论返波振荡器 双波段 双电子束 粒子模拟 relativistic backward wave oscillator dualband dual annular beams particleincell simulation 
强激光与粒子束
2011, 23(9): 2489
作者单位
摘要
国防科学技术大学 光电科学与工程学院, 长沙 410073
设计了一种紧凑型P波段相对论返波振荡器, 其电动力学结构是由同轴慢波结构和同轴引出结构组成的。同轴慢波结构缩小了器件的径向尺寸;同轴引出结构缩短了器件的轴向长度, 且提高了束波作用效率。通过粒子模拟研究了器件内束波作用的物理过程, 模拟结果表明:器件具有结构紧凑、束波作用效率高的特点。在二极管电压700 kV, 电流7 kA, 导引磁场1.5 T时, 器件在频率833 MHz处获得较高的微波输出, 饱和后输出微波的平均功率达1.58 GW, 效率约为32%, 器件电磁结构尺寸仅为108 mm×856 mm。
P波段 同轴慢波结构 相对论返波振荡器 粒子模拟 高功率微波 P-band coaxial slow wave structure relativistic backward wave oscillator particle simulation high power microwave 
强激光与粒子束
2011, 23(4): 1025
作者单位
摘要
国防科学技术大学 光电科学与工程学院, 长沙 410073
从物理机制上定性地分析了导致脉冲缩短的主要原因, 给出了长脉冲重复频率运行下的相对论返波振荡器(RBWO)设计原则。结合传统谐振式返波振荡器的基本设计理论, 设计和模拟优化了工作在S波段的长脉冲RBWO, 并利用本实验室现有长脉冲脉冲功率驱动源开展了S波段长脉冲RBWO的实验研究。实验结果表明: 在单次运行条件下, 微波输出功率达到约2 GW、脉宽约90 ns; 在10 Hz重复频率运行条件下, 输出微波功率达到约1 GW、脉宽约100 ns。器件产生的微波频率为3.6 GHz, 输出模式为TM01模, 效率约20%。对实验结果分析表明, 器件截止颈和第一个慢波结构结合处的爆炸发射是导致脉冲缩短的主要原因之一。
长脉冲 相对论返波振荡器 重复频率 射频场 击穿 long pulse relativistic backward-wave oscillator repetition operation RF field breakdown 
强激光与粒子束
2010, 22(11): 2648
作者单位
摘要
国防科学技术大学 光电科学与工程学院, 长沙 410073
设计了一种C波段谐振式相对论返波振荡器, 分析了其结构特点和工作的物理机制。利用粒子模拟方法研究了器件的工作特性, 发现插入段长度和反射器半径的选取对该类器件的效率非常关键; 在二极管电压为0.5~1.0 MV范围内, 所设计的器件的效率为20%~25%, 频率保持在4.25 GHz附近。结合对器件实际高频结构的电动力学特性分析, 重点研究了纵向谐振模式、品质因数等特点, 结果表明该器件工作在2π/5模、品质因数约为100时功率效率最高。在此基础上, 解释了谐振式相对论返波振荡器具有适用的电子束范围宽、频率稳定等特点的原因, 并对该类器件的相关设计原则进行了分析验证。
高功率微波 相对论返波振荡器 纵向谐振模式 C波段 high power microwave relativistic backward-wave oscillator longitudinal resonant mode C-band 
强激光与粒子束
2010, 22(10): 2397
作者单位
摘要
电子科技大学 物理电子学院, 成都 610054
采用过模同轴波纹型返波管, 其互作用区由2段周期不同的波纹慢波结构组成, 利用粒子模拟软件MAGIC进行数值模拟, 得到了X波段稳定的3个频率微波输出。粒子模拟的结果为: 在强流电子束电压为570 kV, 电流为11.4 kA, 引导磁场为0.72 T的条件下, 获得的3个频率分别为9.575, 10.025和10.475 GHz,总微波功率为1.0 GW, 效率为15.4%。通过对电压的调节, 进一步获得了4个频率的微波输出。
高功率微波 多频 X波段 相对论返波振荡器 粒子模拟 high power microwave multi-frequency X-band relativistic backward-wave oscillator particle simulation 
强激光与粒子束
2010, 22(6): 1327
作者单位
摘要
国防科学技术大学光电科学与工程学院, 长沙 410073
利用电磁软件Superfish求解了同轴慢波结构中准TEM模对应的π模的电场矢量分布, 分析了内导体半径对谐振频率的影响。采用Karat 2.5维全电磁粒子模拟程序设计了一个L波段相对论返波振荡器, 研究了内导体半径参数改变对器件工作频率的影响。通过使用半径为0.50, 0.75, 1.00 cm的内导体, 实验测得微波中心频率分别为1.64, 1.63, 1.61 GHz, 变化趋势与理论分析结果一致。实验测得频率比粒子模拟结果仅高0.01 GHz, 两者吻合较好。
内导体 同轴慢波结构 频率选择 相对论返波振荡器 高功率微波 inner-conductor coaxial slow-wave structure frequency selection relativistic backward wave oscillator high power microwave 
强激光与粒子束
2010, 22(5): 1077
作者单位
摘要
国防科学技术大学 光电科学与工程学院,长沙 410073
设计了一个紧凑型L波段相对论返波振荡器 (RBWO),利用Karat 2.5维全电磁粒子模拟程序研究了器件内部束-波作用的物理过程。模拟结果表明:在二极管电压700 kV、电子束流10 kA、导引磁场为10 T时,能实现L波段2.23 GW高功率微波输出,平均效率约为31.8%。为验证模拟结果,在高阻加速器平台上进行了初步实验:当二极管电压为703 kV、电流10.6 kA、导引磁场为0.8 T时,实验获得了峰值功率105 GW、频率1.61 GHz、脉宽38 ns的高功率微波输出,其功率效率为14.4%。
高功率微波 相对论返波振荡器 同轴慢波结构 L波段 high power microwave relativistic backward wave oscillator coaxial slow-wave structure L-band 
强激光与粒子束
2010, 22(3): 609

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!