何遥 1,2李伟 1,2董荣录 2祁秋景 3[ ... ]杨良保 2
作者单位
摘要
1 安徽大学物质科学与信息技术研究院, 安徽 合肥 230039
2 中国科学院合肥物质科学研究院健康与医学技术研究所, 安徽 合肥 230031
3 安徽省公安厅物证鉴定管理处, 安徽 合肥 230000
4 东营市疾病预防控制中心, 山东 东营 257091
5 东北大学信息科学与工程学院, 辽宁 沈阳 110819
在全球范围内频繁发生芬太尼类物质滥用与致死案件, 人体中芬太尼类物质的检测与识别愈发重要。 芬太尼类物质在经过人体一段时间后, 仍有一部分原体随着尿液排出, 因此可通过检测尿液中芬太尼类物质反映其毒品滥用史。 表面增强拉曼光谱(SERS)具有快速、 高灵敏、 易操作等特点, 适合尿液中芬太尼类物质的现场检测与分析。 但尿液中尿素等物质的背景峰与芬太尼类物质SERS特征峰高度重合, 芬太尼类物质特征峰被尿液背景峰所掩盖, 这对尿液中芬太尼类的光谱识别造成了很大的干扰。 结合Voigt线型建立谱峰解析模型, 对尿液与芬太尼类物质重叠部分进行谱峰分析。 针对SERS光谱噪声与荧光等因素对谱峰解析模型的干扰, 采用无约束Nelder-Mead算法对模型进行优化与计算, 利用该算法对迭代参数初始值不敏感的特点, 提高谱峰解析模型的准确度。 根据SERS光谱半峰宽的特征对解析峰集合进行筛选, 对SERS光谱的尿液背景峰进行扣除, 以还原芬太尼类SERS光谱1 000与1 030 cm-1处谱峰特征。 实验结果与现象表明, 利用Voigt线型建立的谱峰解析模型对尿液中芬太尼类SERS光谱拟合度均达到99%以上, 能够通过解峰集合的筛选还原尿液中芬太尼类SERS光谱特征, 还原光谱与芬太尼类特征峰的半峰宽与峰比例等特点均高度一致。 在空白尿液SERS光谱进行解析时, 其解析峰集合中不含有芬太尼类物质的特征谱峰, 可以有效区分空白尿液与含芬太尼类物质尿液。 利用相似系数(HQI)对还原光谱片段(935~1 100 cm-1)进行识别, 能有效区分尿液中奥芬太尼、 呋喃芬太尼、 乙酰芬太尼三种芬太尼, 并提升光谱之间的区分度。 该解析模型有望为尿液中芬太尼类的识别与判断提供解决实际问题的途径。
表面增强拉曼光谱 背景扣除 光谱解析 特征还原 Voigt线型 Surface enhanced Raman spectroscopy Background correction Spectrum analysis Feature restoration Voigt line shape 
光谱学与光谱分析
2023, 43(1): 85
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
紫外拉曼光谱技术相较于传统拉曼光谱技术,具有灵敏度高、日盲性、人眼安全性高等优点,被应用于多个领域。采用266 nm紫外激光器作为光源,拉曼和荧光光谱可能存在部分重叠,进而影响拉曼光谱特征的准确获取。针对此问题,联合形态学和多项式拟合算法对紫外拉曼的荧光背景进行扣除,该方法融合形态学较好地保留光谱特征、多项式拟合方法简单有效的优点,实现对紫外拉曼光谱中荧光背景的准确扣除。为了验证方法的有效性,采用该方法对4种不同类型背景的仿真光谱进行基线校正,并与传统方法进行对比。结果表明:相较于现有基线校正算法,该方法在准确率方面优势明显,获得更好的基线校正效果。进一步地,采用该算法对紫外拉曼光谱装置获得的不同衬底硝酸钾样品的实测光谱进行基线校正,结果表明该方法对于不同类型的衬底背景均可获得纯净的拉曼光谱,这为下一步的样品分析提供了更准确的光谱信息。
光谱学 拉曼光谱技术 紫外拉曼 背景扣除 形态学 多项式拟合 
光学学报
2022, 42(22): 2230001
作者单位
摘要
1 河北大学 质量技术监督学院,河北 保定 071000
2 计量仪器与系统国家地方联合工程研究中心,河北 保定 071000
土壤中重金属的污染严重影响了农业和食品安全,因此,对重金属污染的高效、准确的检测是目前亟需解决的问题。采用激光诱导击穿光谱技术(Laser induced breakdown spectroscopy,LIBS)对土壤中Ni元素进行定量分析时发现,土壤中波长为373.68 nm的Ni元素的特征峰会受到Al元素在373.39 nm处谱线的影响,因此,将纯铝基底土壤光谱与压片土壤光谱进行了对比测量。提出了以纯Al作为基底,采用纯Al基底谱线扣除土壤背景中Al元素谱线的方法,来消除土壤背景中Al元素对Ni元素干扰,该方法被称为背景扣除法。实验确定了两种土壤样品的最佳延迟时间均为1.0 μs,透镜到样品的距离(Lens to sample distance,LTSD)分别为97 mm和96 mm。采用内标法对两种土壤样品中的Ni进行了定量分析,得到纯Al基底土壤样品中Ni元素的定标曲线拟合效果较好,相关系数R2为0.997,最大标准偏差(Relative standard deviation,RSD)为4.34%,采用基底背景扣除法后的纯铝基底土壤样品中Ni元素检测的相对误差降低到4%。实验结果表明:采用LIBS技术对土壤中重金属元素含量测量时,在元素特征谱线有限的情况下,为避免谱线干扰,提高检测精度,采用背景扣除的方法能够有效消除元素间的谱线的干扰。
激光诱导击穿光谱技术 谱线干扰 背景扣除 定量分析 laser-induced breakdown spectroscopy spectral line interference background subtraction quantitative analysis 
红外与激光工程
2021, 50(1): 20200136
作者单位
摘要
1 厦门大学航空航天学院, 福建 厦门 361005
2 北京长城计量测试技术研究所国防科技工业第一计量测试研究中心, 北京 100095
在针尖增强拉曼光谱(TERS)形貌成像过程中, 由于针尖与扫描台无法绝对平行、 样品电子密度骤变处针尖快速升降以及扫描控制系统响应时间特性差等综合原因的影响, 往往使形貌图中带有倾斜或边界面卷曲的成像背景。 成像背景对样品形貌的识别和分析带来十分不利的影响, 而背景扣除就是解决该问题的重要手段, 也是形貌成像预处理的重要组成部分。 背景扣除的原理一般是通过拟合背景的方法来扣除成像中的背景。 传统的背景扣除方法是利用多项式拟合的方法对成像进行逐行的基线校正, 但是该方法在处理形貌成像时常常会由于过拟合而造成样品形貌的失真, 同时容易在图片上留下明显的线条纹理。 针对传统方法的缺点, 本文提出采用B样条曲面拟合方法, 直接对样品形貌图进行曲面背景拟合, 发挥B样条低阶光滑的优点, 能够有效克服传统方法的缺陷。 在实验中, 同时利用传统方法和该方法对金单晶和合成金片的形貌图进行背景扣除, 实验结果表明, 两种方法都能够扣除样品形貌图中的成像背景, 但与传统方法相比, 所提出的方法不会造成样品形貌的失真, 且不会留下线条纹理, 获得了更加良好的背景扣除效果, 为进一步分析样品形貌特征提供了更准确可靠的信息, 是一种更加有效的TERS形貌成像背景扣除算法。
背景扣除 TERS成像 形貌图 B样条曲面 Background subtraction TERS imaging Topographic image B-spline surface 
光谱学与光谱分析
2018, 38(2): 394
作者单位
摘要
河南科技大学物理工程学院, 河南 洛阳 471023
激光诱导击穿光谱技术以其无需样品预处理、 分析速度快、 能实现多元素同时检测和远程分析等优点已经被广泛应用于诸多领域的物质成分定性或定量分析。 该技术的理论基础是激光诱导等离子体。 对等离子体光谱参数(如光谱谱线强度、 等离子体温度等)的准确测量是利用该技术进行定性或定量分析的前提条件。 实际的实验系统中, 由于仪器本身固有的性能限制, 会造成采集光谱信号的失真, 从而限制等离子体光谱参数的精确测量或计算。 为了克服仪器固有性能的影响, 分析了实验系统所用中阶梯光栅光谱仪和传输光纤的固有性能缺点对光谱信号背景噪声和元素谱线绝对强度的影响, 然后采用剥峰法对光谱信号中存在的锯齿状背景噪声进行扣除, 利用辐射定标光源的标准光谱数据对谱线绝对强度进行校正, 并对比了背景扣除和强度校正对等离子体谱线强度和等离子体温度的影响, 实验表明谱线强度校正对合金钢等离子体380 nm以下的光谱信号具有较大影响, 通过背景扣除和强度校正后, 等离子体温度由13 401.75 K降低至8 980.72 K, 玻尔兹曼平面法求解等离子体温度的拟合决定系数由0.60提高至0.91。 因此在光谱数据处理之前对测量光谱进行背景扣除和强度校正是十分必要的, 为提供可靠地光谱数据进行物质成分定性或定量分析奠定了基础。
激光诱导等离子体 背景扣除 强度校正 Laser-induced plasma Background deduction Intensity correction 
光谱学与光谱分析
2018, 38(1): 276
作者单位
摘要
华南理工大学化学化工学院, 广东 广州 510640
为扣除溶剂或其他背景组分的干扰, 测量红外光谱时常常需要获得期望强度的高质量背景单光束谱。 通常, 实验上获得期望强度的背景谱是极其困难的。 为实现这一重要且十分困难的目标, 引进了杂化单光束谱的概念。 同一溶液但不同厚度的b1和b2的两样品的单光束谱分别为b1和b2, 则定义它们的线性组合α=αb1+(1-α)b2为杂化单光束谱, 其中α(0≤α≤1)称为组分因子。 调整组分因子α数值, 就可以精确调控杂化谱的强度。 在合适的条件下, 杂化谱α与厚度为b2-αb2+αb1的真实样品的光谱高度类似, 即b2-αb2+αb1≈α。 因此, 不用制备厚度为b2-αb2+αb1的样品, 其单光束谱可以用α来替代。 随着α变化, 可以得到不同的α, 厚度在b1和b2间的真实样品的单光束谱都可用相应的α来替代。 实验结果证实, 杂化谱提供了一种简单和易操作的扣除背景干扰的高效方法。
红外光谱 杂化单光束谱 光谱失真 背景扣除 光谱类似性 Infrared spectroscopy Hybrid single-beam spectrum Spectral distortion Background elimination Spectral similarity 
光谱学与光谱分析
2017, 37(5): 1581
作者单位
摘要
浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
为准确且无损测定小麦叶片的反射光谱, 研究了不同背景对叶片表面反射光谱的影响, 在400~1 000 nm波段范围测定了小麦叶片8种背景下的反射光谱以及叶绿素含量。 以PLATE模型为基础, 首次提出了BPLT(background plate)模型, 扣除由不同背景导致的叶片反射光谱的变化。 模型以背景下叶片的反射率R0, 不同背景反射率σ为输入, 空气和致密叶片的界面反射比R12, 致密叶片和空气的界面反射比R21, 致密叶片的透射系数τ三参数中间变量, 得到最终无背景时叶片反射率R值的2-3-1模型。 采用方差分析法(analysis of variance, ANOVA)进行了BPLT模型验证, 对比分析了背景扣除前后10种叶绿素指数值的变化。 结果表明, 当反演的确定系数DC(determination coefficients)>0.90且残差平方和SSE<1时, 反演的灵敏度较高, 对小麦叶片不同叶绿素浓度的背景扣除有着较好的效果; 采用BPLT模型背景扣除后, 背景因素所占的百分比低于5%; 优选了NDI&MCARI的函数关系, NDI&MCARI的斜率和叶绿素浓度的R2由背景扣除前的0.847 4提高到背景扣除后的0.977 8。 为真实测定不同背景下小麦叶片的反射光谱提供了依据。
BPLT模型 小麦叶片 背景扣除 叶绿素指数 方差分析法 BPLT model Wheat leaves Background elimination Vegetation indices Analysis of Variance 
光谱学与光谱分析
2016, 36(1): 213
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春130033
2 哈尔滨工业大学 控制科学与工程系,黑龙江 哈尔滨150001
在遥感相机的实际应用中,卫星下传的图像灰度分布往往不佳,针对该问题展开了相关研究。分析了影响卫星下传图像灰度分布的因素,并以遥感相机成像电子学系统的系统参数为基础,给出了3种可行的星上图像背景扣除和灰度拉伸方案;推导了3种方案下获取图像的灰阶丰富程度公式,并确定了最优方案,即采用模拟和数字混合拉伸的办法,对初始量化位数的图像数据进行处理,然后舍掉后若干位,以数传规定位数下传。在实验室条件下,以实际的遥感相机成像系统为依托进行了实验。实验结果表明:文中提出的3种方案均能够实现遥感相机图像的星上背景扣除和灰度拉伸功能;但方案(三)得到的灰阶数量最多,成像效果最好,适合且能够应用于航天遥感相机当中。
遥感相机 成像电子学 成像质量 背景扣除 灰度拉伸 remote sensing camera imaging electronics imaging quality background subtraction grayscale 
液晶与显示
2012, 27(2): 235
作者单位
摘要
1 中南大学中药现代化研究中心, 湖南 长沙410083
2 中国药品生物制品检定所, 北京100050
3 必达泰克光电科技(上海)有限公司, 上海200233
拉曼光谱分析中, 由于有机分子或样品中污染物的荧光影响, 常会使拉曼光谱产生高背景信号, 以致其拉曼光谱吸收信号被淹没。 利用自行开发的软件包baselineWavelet, 本文对醋酸泼尼松片和格列本脲片的拉曼光谱进行了荧光背景扣除研究, 采用主成分分析和随机森林算法对它们进行聚类分析, 得到了较好的结果。 通过这2种药物的拉曼光谱聚类分析结果, 检验了该背景扣除算法的有效性和准确性, 并讨论了荧光背景对拉曼光谱聚类分析的影响。 结果说明, 荧光背景对拉曼光谱聚类分析影响很大, 在分析前必须预先扣除。
拉曼光谱 背景扣除 聚类分析 随机森林 主成分分析 Raman spectroscopy Background correction Clustering analysis Random forests Principal component analysis 
光谱学与光谱分析
2010, 30(8): 2157

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!