作者单位
摘要
1 内江师范学院 物理与电子信息工程学院,四川 内江 641112
2 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
介绍了激光-等离子体相互作用产生正电子的相关实验和数值模拟研究进展。简要回顾了激光-等离子体相互作用正电子的发现过程及激光-等离子体作用产生正电子的三种物理机制;详细地叙述了激光与物质相互作用产生正电子的两类典型实验方式(即直接方式和间接方式)及相关的实验和数值模拟结果;对激光-等离子体相互作用产生正电子的研究进行了评述。从现有研究进展来看,目前理论研究和实验研究所获结论差异较大,还需要从激光设备、实验方案设计以及理论和模拟研究方面做大量细致的工作。
激光-等离子体 正电子产生 量子电动力学效应 laser-plasmas positron generation quantum electrodynamics effect 
强激光与粒子束
2023, 35(7): 072001
作者单位
摘要
西安交通大学 核科学与技术学院,西安 710049
超强激光脉冲与相对论电子束相互对撞是当前主要的强场量子电动力学(QED)实验手段。如何测量超强激光脉冲和电子束对撞的准确度,进而实现微米精度的准确对撞,是目前限制实验发展的重要因素。利用蒙特卡罗数值模拟方法,系统研究了超强激光脉冲和相对论电子束相互对撞过程,重点关注了电子和辐射光子动力学信息与激光脉冲和电子束对撞偏移量之间的对应关系。研究发现:辐射光子的空间分布信息,可以有效反映出激光脉冲和电子束的对撞偏移量。基于该研究结果,实验中可利用光子空间分布的信息,实现对激光脉冲和电子束对撞准确度的调节,从而有望促进强场QED实验技术的发展。
超强激光 康普顿散射 强场量子电动力学 激光-电子相互作用 ultra-intense lasers Compton scattering strong-field quantum electrodynamics laser-electron interaction 
强激光与粒子束
2023, 35(1): 012008
鲁瑜 1张昊 1张亮琪 1,2魏玉清 1[ ... ]余同普 1,*
作者单位
摘要
1 国防科技大学 理学院,长沙 410073
2 南华大学 核科学与技术学院,湖南 衡阳 421001
随着激光技术的不断发展,激光功率突破10 PW量级,激光与物质相互作用进入近量子电动力学(QED)范畴。从弱相对论激光到相对论激光再到强相对论激光,激光场与物质的耦合可以产生能量从keV到MeV甚至GeV的X/γ射线。这些辐射具有通量大、亮度高、能量高和脉宽短等特点,在核物理、高能量密度物理、天体物理等基础研究以及材料科学、成像、医学等领域具有广泛应用前景。系统梳理了近年来相对论强激光与气体、近临界密度等离子体及固体靶相互作用,通过诸如同步辐射、betatron和类betatron辐射、Thomson散射和非线性Compton散射过程等产生高能X/γ射线的最新研究进展,总结了各种方案产生的X/γ射线的品质因子和潜在应用,并为下一步基于强激光大科学装置的实验研究提供理论参考。
强场量子电动力学 激光与等离子体相互作用 高能辐射 X射线 γ射线 strong-field quantum electrodynamics laser-plasma interaction high-energy radiation X-ray γ-ray 
强激光与粒子束
2023, 35(1): 012006
作者单位
摘要
1 中国科学院 上海光学精密机械研究所,强场激光物理国家重点实验室,上海 201800
2 上海科技大学 物质学院,上海 201210
人类在实验室可实现的激光强度极限是强场量子电动力学(QED)的重要问题。在非理想真空条件下,极端超强激光与残留的电子相互作用触发伽马光子辐射与正负电子对产生的QED级联效应,从而显著消耗激光能量,大幅降低可实现的激光峰值强度。考虑到QED级联效应与激光偏振、焦斑尺寸、脉宽长度有着密切的关系,基于囊括QED过程的粒子网格模拟方法(Particle-in-cell, PIC)对上述参数的效应进行分析,同时构建了激光场演化的自洽方程来进行解释,二者结果基本保持一致,获得的强度极限在考虑的参数范围内为1026~1027 W/cm−2。结果表明,同等情形下,圆偏振激光可激发更强的QED级联,使得激光强度上限略低于线偏振。此外,紧聚焦激光由于QED级联发生的时空间尺度更小,从而激光的吸收效应被显著抑制,进而可以实现更强的聚焦强度。对于更长脉宽的激光,由于正负电子对吸收的能量区域更加弥散,使得可实现的激光强度上限阈值有所提升。但对于超短脉宽情形(如单周期),由于QED级联的种子源电子束不能很好地被约束在激光区域,理论分析耗散的激光能量偏高。此外,在高真空度的情形下,残余电子的随机性也会对可实现激光强度产生一定的影响。研究结果可为后续开展极端强场QED实验和数100 PW级超强超短激光装置建设提供指导。
激光极限强度 强场量子电动力学 量子电动力学级联效应 激光等离子体相互作用 PIC模拟 attainable upper limit of laser intensity strong-field quantum electrodynamics quantum electrodynamics cascade laser plasma interaction PIC simulation 
强激光与粒子束
2023, 35(1): 012001
作者单位
摘要
1 南华大学 核科学技术学院,湖南 衡阳 421001
2 国防科技大学 理学院,长沙 410073
3 上海交通大学 物理与天文学院,激光等离子体教育部重点实验室,上海 200240
4 上海交通大学,IFSA协同创新中心,上海 200240
极端超短超强激光脉冲的诞生将光与物质的相互作用推进到由辐射阻尼效应和量子电动力学(QED)效应占主导的高度非线性物理范畴。强场QED效应蕴含了丰富的物理过程包括辐射阻尼、高能伽马辐射、正负电子对产生、QED级联、真空极化等,是高能量密度物理和强场物理研究领域的前沿热点。QED级联是解释致密天体辐射和伽马射线暴形成的重要物理机制,其产生的稠密正电子源在高能物理、材料无损探测、癌症诊断等领域亦有重要的应用前景。介绍了QED级联过程及其理论模型,讨论了固体靶中的QED级联发展及其诱导的非线性物理效应,并回顾了固体靶中稠密正电子产生的主要研究成果。
强场量子电动力学效应 超强激光与固体靶作用 级联发展 稠密正电子产生 分析模型 strong-field quantum electrodynamics effects the interaction of ultra-intense laser and solid target the development of cascade dense positron generation analytical model 
强激光与粒子束
2023, 35(1): 012004
作者单位
摘要
1 同济大学物理科学与工程学院,上海 200092
2 苏州大学物理科学与技术学院,江苏 苏州 215006
详细研究了两原子腔量子电动力学系统中的双光子吸收现象。在自由空间中,由于存在量子干涉效应,两个不同频率的原子无法被同时激发。但是,在强耦合的腔量子电动力学系统中,原子与腔场间的耦合导致系统中出现新的跃迁通道,从而使双原子激发成为可能。通过数值模拟主方程,详细研究了两原子腔量子电动力学系统的光子激发谱,并与双光子激发谱进行比较,证明了双光子激发的可能性。通过进一步分析光子的二阶关联函数、双原子激发概率,揭示了腔内光子的统计性质和实现双原子激发的物理机制。
物理光学 强耦合 两原子腔 量子电动力学 双光子过程 
光学学报
2022, 42(21): 2126006
作者单位
摘要
1 量子光学与光量子器件国家重点实验室, 山西大学光电研究所, 极端光学省部共建协同创新中心, 山西 太原 030006
2 山西大学大数据科学与产业研究院, 山西 太原 030006

光学腔与原子强耦合系统是量子物理研究的基本系统,不但具有重要的物理意义,而且为量子信息、量子计算和量子精密测量中关键技术的产生和关键器件的研发提供了理想系统。强耦合腔与原子相互作用实验从20世纪90年代开始发展,经过多年的研究,在单原子与光学腔强耦合和原子系综与光学腔的耦合研究方面取得了重大进展。随着多原子阵列量子操控技术的进步,可控的多原子阵列与光学微腔强耦合系统近年来成为腔量子电动力学的重要研究方向。然而,目前实现确定性可控的多原子阵列与腔的强耦合仍面临巨大的技术挑战,可控原子数还停留在两个。简要回顾了近年来光频区强耦合腔量子电动力学系统在上述方面的主要实验进展和相应的实验方案,并展望了未来的发展。

量子光学 量子电动力学 光学微腔 强耦合 量子调控 
光学学报
2022, 42(3): 0327005
作者单位
摘要
1 南昌大学信息工程学院电子信息工程系,江西 南昌 330031
2 南昌大学未来技术学院,江西 南昌 330031
提出了一种基于光子-超导量子比特-声子三体复合量子系统相互作用的方案,具体由微波腔和微机械谐振器共同耦合一个超导电荷量子比特构成。基于抽运-探测方法,利用量子朗之万演化方程获得系统一阶线性极化率,研究了超导量子比特耦合微波腔和机械谐振器系统的吸收特性。结果表明,利用双场探测手段,根据信号场的吸收谱中双峰之间的宽度可以精确地测量量子比特与微波腔之间的耦合强度。同时,根据吸收峰和增益峰的位置,实现了振动频率的精确测量。本文提出的测量新方案对精密测量、量子计算以及量子信息处理等领域具有重要的意义。
量子光学 电路量子电动力学 微机械谐振器 探测场吸收特性 
激光与光电子学进展
2022, 59(3): 0327001
张天才 1,2,*毋伟 1,2杨鹏飞 1,2,3李刚 1,2,**张鹏飞 1,2
作者单位
摘要
1 山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
2 山西大学极端光学协同创新中心, 山西 太原 030006
3 山西大学大数据科学与产业研究院, 山西 太原 030006
强耦合腔量子电动力学(cavity quantum electrodynamics, 简称C-QED)系统主要用于研究受限于空间中的光与物质相互作用的物理现象。该系统为深入认识原子与光子间相互作用的动力学行为提供了有力工具。高精细度法布里-珀罗光学微腔(Fabry-Perot cavity, F-P腔)作为强耦合C-QED系统的核心部分,是实现光与物质间的强耦合、探索极端条件下光与物质间的相互作用、精确操控原子以及灵敏探测相关过程等的基础。简要介绍了高精细度F-P腔及其在强耦合C-QED中的应用,包括研究背景、现状及发展动态,并就未来的发展和应用进行了展望。
量子光学 量子电动力学 光学微腔 光与物质相互作用 
光学学报
2021, 41(1): 0127001
作者单位
摘要
1 西安建筑科技大学华清学院, 陕西 西安 710043
2 西安建筑科技大学理学院, 陕西 西安 710055
基于腔量子电动力学 (QED), 提出了一种利用 Ξ-型三能级原子与单模腔场发生非共振相互作用制备三原子 W 纠缠态的方案。该方案要求三个三能级原子和一个单模腔场, 腔场最初处于真空态, 与腔场作用的第一个和第二个原子最初均处于激发态, 第三个原子处于基态。分析和讨论了该方案的实验可行性以及失谐量 δ 对保真度的影响。研究结果表明: 1) 当原子与腔场之间的相互作用时间不 同时, 获得该纠缠态的保真度以及相应的成功几率不同, 通过选择合适的原子与腔场之间的相互作用时间可以获得具有最大保真度的 W 纠缠态; 2) 在耦合常数不同的情况下, 失谐量 δ 对保真度的影响程度不同。此外, 研究表明该方案可以推广至制备任意分权重的W态。
量子光学 量子纠缠 W 纠缠态 非共振 量子电动力学 保真度 quantum optics quantum entanglement W state nonresonant cavity quantum electrodynamics fidelity 
量子电子学报
2020, 37(6): 685

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!