光谱学与光谱分析, 2019, 39 (9): 2889, 网络出版: 2019-09-28  

TBAB-CO2水合物形成过程的微观实验

Microscopic Experimental Study on the Crystallization of TBAB-CO2 Hydrate
作者单位
1 梧州学院化学工程与资源再利用学院, 广西 梧州 543000
2 中国科学院广州能源研究所, 广东 广州 510640
3 中国科学院天然气水合物重点实验室, 广东 广州 510640
4 中国科学院广州天然气水合物中心, 广东 广州 510640
5 中国地质调查局青岛海洋地质研究所自然资源部天然气水合物重点实验室, 山东 青岛 266071
摘要
四丁基溴化铵(TBAB)半笼型水合物在二氧化碳(CO2)捕集和封存技术中具有巨大的发展与应用潜力。 由于晶体结构的复杂性, TBAB半笼型水合物的动力学过程尚未得到充分的研究。 为了解TBAB半笼型水合物在储气方面的动力学特性, 实验采用原位激光拉曼技术和多晶粉末X射线衍射仪(PXRD)对nCO2·TBAB·26H2O和nCO2·TBAB·38H2O水合物的光谱特征进行了鉴别与分析, 利用原位激光拉曼技术考察了CO2分子分别进入2种晶体结构的动力学过程。 研究结果表明, 2种晶体结构的拉曼光谱具有较高的相似性, 值得注意的是nCO2·TBAB·26H2O中位于1 3095和1 3269 cm-1的拉曼峰为TBA+阳离子中C—C键的变形振动峰, 在nCO2·TBAB·38H2O水合物中峰基本不发生改变, 但半峰宽降低, 峰形也变得相对清晰; 同时, nCO2·TBAB·26H2O中位于1 4466和1 458 cm-1的拉曼峰为TBA+阳离子中C—H键的剪切振动峰, 在nCO2·TBAB·38H2O水合物中分别向左、 右两边发生了位移, 峰形的重叠度也随之下降。 依据上述2处拉曼光谱特征可以对2种晶体结构进行辨别。 通过PXRD图谱可以发现2种晶体结构的衍射图谱存在着比较明显的差距。 nCO2·TBAB·26H2O晶体属于四方晶系, 空间群(P4/m), 而nCO2·TBAB·38H2O属于正交晶系, 空间群(Pmma)。 图谱中2θ=8406°和10941°分别为nCO2·TBAB·38H2O的(200)和(220)晶面的特征峰, 而2θ=5976°和6969°分别为nCO2·TBAB·26H2O的(012)和(003)晶面特征峰, 可以用来判别样品中水合物的晶体结构。 在原位拉曼测量过程中, nCO2·TBAB·26H2O和nCO2·TBAB·38H2O分别在已经合成好的TBAB·26H2O和TBAB·38H2O水合物表面形成。 在276 K, 2 MPa条件下, 气相中的CO2分子分别进入2种晶体结构中用于储气的512笼形结构, 在1 2754和1 3793 cm-1处形成特征峰并逐渐增长。 实验以2种TBAB水合物位于1 1103 cm-1的拉曼峰作为参考, 比较了CO2在水合物中的增长速率。 研究发现在反应初期的75 min内CO2在2种水合物中的含量基本保持线性增长且上升速率的差别不大。 由于测量点位于水合物表面, 受气体在水合物中扩散的阻力较小同时2种TBAB水合物均采用512笼形结构储气导致了储气速率相近。 以上的微观晶体结构研究结果对TBAB水合物法捕集和封存CO2技术应用具有重要的意义。
Abstract
TBAB semi-clathrate hydrate has a huge potential for effective application of carbon dioxide (CO2) capture. Because of the complexity of the crystal structure, the kinetics of TBAB hydrate remains poorly understood. In this work, the spectral characteristics of nCO2·TBAB·26H2O and nCO2·TBAB·38H2O were analyzed by Raman and powder X-ray diffraction (PXRD). To understand the gas storage characteristics of TBAB hydrate, the processes of CO2 molecules entering 2 kinds of crystal structures were measured using in situ Raman spectroscopy. Results showed that the Raman spectra of 2 crystal structures had high similarity. The Raman peaks at 1 3095 and 1 3269 cm-1 were assigned to be the C—C deformation vibration mode of TBA+ cations in nCO2·TBAB·26H2O hydrate. They did not shift in nCO2·TBAB·38H2O hydrate, but became detached and narrow in half-peak width. Meanwhile, the peaks at 1 4466 and 1 458 cm-1 were assigned to be the C—H shear vibration mode of TBA+ cations in nCO2·TBAB·26H2O hydrate. They shifted away from each other and had lower less overlap region in nCO2·TBAB·38H2O hydrate. Those features in Raman spectra were helpful to distinguish the 2 kinds of structures. The PXRD patterns of the 2 TBAB hydrates showed large difference from each other. nCO2·TBAB·26H2O hydrate was tetragonal which had the space group of (P4/m), while nCO2·TBAB·38H2O hydrate was orthorhombic which had the space group of (Pmma). In the PXRD patterns, the peaks at 2θ=8406° and 10941° were (200) and (220) planes of nCO2·TBAB·38H2O hydrate respectively. The structure of nCO2·TBAB·26H2O hydrate was characterized by the (012) and (003) planes at 2θ=5976° and 6969° respectively. During the in situ Raman measurements, nCO2·TBAB·26H2O and nCO2·TBAB·38H2O hydrates grew directly from the prepared TBAB·26H2O and TBAB·38H2O hydrates at 276 K, 2 MPa. The CO2 molecules were captured by the 512 hydrate cages in the 2 kinds of hydrates, formed the characteristic peaks of CO2 at 1 2754 and 1 3793 cm-1 and increased continuously. The Raman peaks at 1 1103 cm-1 were chosen as reference peak to compare the CO2 concentration growth in the 2 kinds of hydrates. In the initial 75 minutes of in situ Raman measurements, the content of CO2 in hydrate phase grew linearly with generally the same growth rates in 2 kinds of crystals. As the measuring spots were on the hydrate surface where the gas diffusion resistance in hydrate phase could be neglected and the cage structures used for gas storage were all 512 cage, the similar gas storage rates were obtained. The microcosmic experimental study provides a theoretical basis for CO2 capture technology by forming TBAB semi-clathrate hydrate.

陈玉凤, 周雪冰, 梁德青, 吴能友. TBAB-CO2水合物形成过程的微观实验[J]. 光谱学与光谱分析, 2019, 39(9): 2889. CHEN Yu-feng, ZHOU Xue-bing, LIANG De-qing, WU Neng-you. Microscopic Experimental Study on the Crystallization of TBAB-CO2 Hydrate[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2889.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!