液晶与显示, 2020, 35 (8): 816, 网络出版: 2020-08-18  

微水雾循环散热模组设计与研究

Design and research of micro-water mist circulating cooling module
作者单位
北京京东方光电科技集团有限公司, 北京 100176
摘要
为提升面光源的有效散热性能, 基于液滴雾化机理, 制作了一种厚度为12 mm的主动式超声微水雾散热模组。采用超声波雾化片将液态水振荡成微小液滴, 并直接喷射到热源面, 在热源表面形成超薄液体薄膜, 通过微液滴喷射产生的强制对流和蒸发汽化及二次成核作用实现迅速降温, 并在复合吸水介质作用下实现内部液体的循环。通过搭建实验平台, 采用热敏电阻温度采集系统分别对翅片风扇和微水雾散热模组的散热性能进行了测试。实验结果表明: 在相同尺寸和功耗条件下, 微水雾散热模组的最大温升比翅片风扇降低了7.8 ℃, 散热性能提升了12.9%, 并且实现了主动式散热方案低成本、无噪声、高散热性能的要求。
Abstract
To improve the heat dissipation performance of surface light source, a 12 mm thickness active ultrasonic micro-water mist heat dissipation module is made, based on the droplet atomization mechanism principle. The heat dissipation principle for this design is that, liquid water is oscillated into tiny droplets by ultrasonic atomizing. Then droplets are directly injected onto heat source surface, forming an ultrathin liquid film. The ejected droplets spray also produce forced convection and evaporation vaporization with secondary nucleation effect to achieve rapid cooling. With a special design of absorbent medium, the internal liquid circulation is achieved to enhance the heat dissipation effect. In this article, the heat dissipation performance comparison of fin fan and micro water mist cooling module are tested by using thermistor temperature acquisition system. Under the same size and power consumption conditions, the temperature rise of the micro-water mist cooling module is 7.8 ℃ lower than fin fan module. Compared with fin fan module, the heat dissipation performance of our design is increased by 12.9%. At the same time, this new design achieves the requirements of low cost, no noise and high heat dissipation performance.

郭少飞, 王世鹏, 桑建, 孙海威, 李中华. 微水雾循环散热模组设计与研究[J]. 液晶与显示, 2020, 35(8): 816. GUO Shao-fei, WANG Shi-peng, SANG Jian, SUN Hai-wei, LI Zhong-hua. Design and research of micro-water mist circulating cooling module[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(8): 816.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!