High Power Laser Science and Engineering
Search

2018, 6(4) Column

MORE

High Power Laser Science and Engineering 第6卷 第4期

Rao Li 1,2,3Youen Jiang 1,2Zhi Qiao 1,2,3Canhong Huang 1,2,3[ ... ]Zunqi Lin 1,2
Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics , Shanghai 201800 , China
2 Key Laboratory of High Power Laser and Physics , Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China
3 University of Chinese Academy of Sciences , Beijing 100049 , China
Polarization mode dispersion (PMD) in fibers for high-power lasers can induce significant frequency modulation to amplitude modulation (FM-to-AM) conversion. However, existing techniques are not sufficiently flexible to achieve efficient compensation for such FM-to-AM conversion. By analyzing the nonuniform transmission spectrum caused by PMD, we found that the large-scale envelope of the transmission spectrum has more serious impacts on the amount of AM. In order to suppress the PMD-induced FM-to-AM conversion, we propose a novel tunable spectral filter with multiple degrees of freedom based on a half-wave plate, a nematic liquid crystal, and an axis-rotated polarization-maintaining fiber. Peak wavelength, free spectral range (FSR), and modulation depth of the filter are decoupled and can be controlled independently, which is verified through both simulations and experiments. The filter is utilized to compensate for the PMD-induced FM-to-AM conversion in the front end of a high-power laser facility. The results indicate that, for a pulse with phase-modulation frequency of 22.82 GHz, the FM-to-AM conversion could be reduced from 18% to 3.2% within a short time and maintained below 6.5% for 3 h. The proposed filter is also promising for other applications that require flexible spectral control such as high-speed channel selection in optical communication networks.
advanced laser technology and applications design fiber laser and applications high-power laser laser facility laser facility and engineering laser systems modeling optimization 
High Power Laser Science and Engineering
2018, 6(4): 04000e53
Author Affiliations
Abstract
1 Institute of Laser Engineering , Beijing University of Technology , Beijing 100124 , China
2 School of Electrical and Electronic Engineering , Nanyang Technological University , Singapore
In 2018, the journal High Power Laser Science and Engineering produced a Special Issue on Fibres for High Power Lasers. Nowadays, fibre-based laser sources have found extensive applications both in industry and in scientific research. The scope of the special issue was to span the latest developments on the fast developing fibre-based high-power lasers and amplifiers. The topics invited for inclusion were:
fibre laser gain fibres high-power fibre amplifier 
High Power Laser Science and Engineering
2018, 6(4): 04000e54
Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics, Shanghai 201800, China
2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 Shanghai Institute of Laser Plasma, Chinese Academy of Engineering and Physics, Shanghai 201800, China
In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics (NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG-II upgrade (SG-II UP) facility, and SG-II 5 PW facility, is operational and available for interested scientists studying inertial confinement fusion (ICF) and a broad range of high-energy-density physics. These facilities can provide important experimental capabilities by combining different pulse widths of nanosecond, picosecond, and femtosecond scales. In addition, the SG-II UP facility, consisting of a single petawatt system and an eight-beam nanosecond system, is introduced including several laser technologies that have been developed to ensure the performance of the facility. Recent developments of the SG-II 5 PW facility are also presented.
high-power laser facility inertial confinement fusion solid-state amplifier 
High Power Laser Science and Engineering
2018, 6(4): 04000e55
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies , National University of Defense Technology , Changsha 410073 , China
2 Hunan Provincial Key Laboratory of High Energy Laser Technology , National University of Defense Technology , Changsha 410073 , China
3 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser , National University of Defense Technology , Changsha 410073 , China
Compared with end pumping fiber combiner, one of the advantages for side pumping combiner is the unlimited pumping points, which means multi-point or cascaded side pumping can be realized. However, the loss mechanism of the cascaded structure is rarely discussed. In this paper, we present the numerical and experimental investigation about the loss mechanism of a two-stage-cascaded side pumping combiner based on tapered-fused technique. The influence of loss mechanism on the coupling efficiency and thermal load of the fiber coating is analyzed according to simulations and experiments with different tapering ratios for the first stage. Based on the analysis, a cascaded component with total pump coupling efficiency of 96.4% handling a pump power of 1088 W is achieved by employing 1018 nm fiber laser as the pump source. Future work to further improve the performance of a cascaded side pumping combiner is discussed and prospected.
fiber combiner fiber laser side pumping 
High Power Laser Science and Engineering
2018, 6(4): 04000e56
Pengfei Ma 1,2Hu Xiao 1,2Daren Meng 1Wei Liu 1[ ... ]Zejin Liu 1,2
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies , National University of Defense Technology , Changsha 410073 , China
2 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser , National University of Defense Technology , Changsha 410073 , China
An all-fiberized and narrow-bandwidth master oscillator power amplification (MOPA) system with record output power of 4 kW level and slope efficiency of 78% is demonstrated. Tandem pumping strategy is tentatively introduced into the narrow-bandwidth MOPA system for thermally induced mode instability (TMI) suppression. The stimulated Brillouin scattering (SBS) effect is balanced by simply using one-stage phase modulation technique. With different phase modulation signals, SBS limited output powers of 336 W, 1.2 kW and 3.94 kW are respectively achieved with spectral bandwidths accounting for 90% power of ${\sim}$ 0.025, 0.17 and ${\sim}$ 0.89 nm. Compared with our previous 976 nm pumping system, TMI threshold is overall boosted to be ${>}$ 5 times in which tandem pumping increases the TMI threshold of ${>}$ 3 times. The beam quality ( $M^{2}$ factor) of the output laser is well within 1.5 below the TMI threshold while it is ultimately saturated to be 1.86 with the influence of TMI at maximal output power. Except for SBS and TMI, stimulated Raman scattering (SRS) effect will be another challenge for further power scaling. In such a high power MOPA system, multi-detrimental effects (SBS, SRS and TMI) will coexist and may be mutual-coupled, which could provide a well platform for further comprehensively investigating and optimizing the high power, narrow-bandwidth fiber amplifiers.
advanced laser technology and applications design fiber laser and applications high power laser laser amplifiers laser systems modeling narrow linewidth optimization 
High Power Laser Science and Engineering
2018, 6(4): 04000e57
Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics , Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China
2 University of Chinese Academy of Sciences , Beijing 100049 , China
We present the design and experiment of a broadband optical parametric chirped-pulse amplifier (OPCPA) which provides high conversion efficiency and good beam quality at 808 nm wavelength. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good beam quality and good output stability are discussed. To improve the conversion efficiency and broaden the amplified signal bandwidth simultaneously, the nonlinear crystal length and OPCPA parameters are analyzed and optimized with the concept of dissipating amplified idler between optical parametric amplification (OPA) of two crystals configuration. In the experiment, an amplifier consisting of two OPCPA stages of ‘L’ type configuration was demonstrated by using the optimized parameters. An amplified signal energy of 160 mJ was achieved with a total pump-to-signal efficiency of 35% (43% efficiency for the OPCPA stage 2). The output bandwidth of signal pulse reached 80 nm and the signal pulse was compressed to 24 fs. The energy stability reached 1.67% RMS at 3% pump energy variation. The optimized OPCPA amplifier operates at a repetition rate of 1 Hz and is used as a front-end injection for the main amplifier of SG-II 5PW laser facility.
BBO nonlinear optics optical parametric chirped-pulse amplifier petawatt laser 
High Power Laser Science and Engineering
2018, 6(4): 04000e58
Author Affiliations
Abstract
1 Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
2 Institute of Physics of the ASCR, Na Slovance 1999/2, 182 21 Prague, Czech Republic
The study of structure, thermodynamic state, equation of state (EOS) and transport properties of warm dense matter (WDM) has become one of the key aspects of laboratory astrophysics. This field has demonstrated its importance not only concerning the internal structure of planets, but also other astrophysical bodies such as brown dwarfs, crusts of old stars or white dwarf stars. There has been a rapid increase in interest and activity in this field over the last two decades owing to many technological advances including not only the commissioning of high energy optical laser systems, z-pinches and X-ray free electron lasers, but also short-pulse laser facilities capable of generation of novel particle and X-ray sources. Many new diagnostic methods have been developed recently to study WDM in its full complexity. Even ultrafast nonequilibrium dynamics has been accessed for the first time thanks to subpicosecond laser pulses achieved at new facilities. Recent years saw a number of major discoveries with direct implications to astrophysics such as the formation of diamond at pressures relevant to interiors of frozen giant planets like Neptune, metallic hydrogen under conditions such as those found inside Jupiter’s dynamo or formation of lonsdaleite crystals under extreme pressures during asteroid impacts on celestial bodies. This paper provides a broad review of the most recent experimental work carried out in this field with a special focus on the methods used. All typical schemes used to produce WDM are discussed in detail. Most of the diagnostic techniques recently established to probe WDM are also described. This paper also provides an overview of the most prominent examples of these methods used in experiments. Even though the main emphasis of the publication is experimental work focused on laboratory astrophysics primarily at laser facilities, a brief outline of other methods such as dynamic compression with z-pinches and static compression using diamond anvil cells (DAC) is also included. Some relevant theoretical and computational efforts related to WDM and astrophysics are mentioned in this review.
high pressure phases laboratory astrophysics lasers planetary interiors plasma physics warm dense matter 
High Power Laser Science and Engineering
2018, 6(4): 04000e59
Author Affiliations
Abstract
1 Department of Advanced Green Energy and Environment , Handong Global University , Pohang 37554 , Korea
2 Global Institute of Laser Technology , Global Green Research and Development Center , Handong Global University , Pohang 37554 , Korea
We have optimized the input pulse width and injection time to achieve the highest possible output pulse energy in a double-pass laser amplifier using two Nd:YAG rods. For this purpose, we have extended the Frantz–Nodvik equation by simultaneously including both spontaneous emission and pump energy variation. The effective pump energy of the flash lamp was 8.84 J for each gain medium. The energy of 1 J could be amplified to an output energy of 12.17 J with the maximum achieved extraction efficiency of 63.18% when an input pulse having a pulse width of 168 s is sent 10 s after the absorbed pump energy becomes the maximum value.
Frantz–Nodvik equation input pulse optimization pulse overlap pump energy variation spontaneous emission 
High Power Laser Science and Engineering
2018, 6(4): 04000e60
Author Affiliations
Abstract
1 Key Laboratory for Laser Plasmas (Ministry of Education) , Collaborative Innovation Centre of IFSA (CICIFSA) , School of Physics and Astronomy , Shanghai Jiao Tong University , Shanghai 200240 , China
2 Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing , Department of Optical Science and Engineering , Fudan University , Shanghai 200433 , China
Pulse contrast is a crucial parameter of high peak-power lasers since the prepulse noise may disturb laser–plasma interactions. Contrast measurement is thus a prerequisite to tackle the contrast challenge in high peak-power lasers. This paper presents the progress review of single-shot cross-correlator (SSCC) for real-time contrast characterization. We begin with the key technologies that enable an SSCC to simultaneously possess high dynamic range ( ), large temporal window (50–70 ps) and high fidelity. We also summarize the instrumentation of SSCC prototypes and their applications on five sets of petawatt laser facilities in China. Finally, we discuss how to extend contrast measurements from time domain to spatiotemporal domain. Real-time and high-dynamic-range contrast measurements, provided by SSCC, can not only characterize various complex noises in high peak-power lasers but also guide the system optimization.
fiber array high dynamic range pulse contrast single-shot cross-correlator 
High Power Laser Science and Engineering
2018, 6(4): 04000e61
Author Affiliations
Abstract
HiLASE Centre , Institute of Physics of the Czech Academy of Sciences , Za Radnicí 828/5 , 25241 , Dolní Břežany , Czech Republic
Development of high energy laser sources with nanosecond pulses at several hertz values for repetition rate has been very attractive in recent years due to their great potential for practical applications. With the recent advancement in fabricating large size laser quality transparent ceramics, diode pumped solid-state laser generating pulse energy of 100 J at 10 Hz has been recently realized at HiLASE center using Yb:YAG ceramic with Cr:YAG cladding. This review discusses Yb based high energy lasers, specific laser geometries for efficient thermal management and the role of transparent ceramics in such diode pumped high-energy-class solid-state lasers around the world.
diode pumped solid-state lasers high energy lasers laser materials transparent ceramics 
High Power Laser Science and Engineering
2018, 6(4): 04000e62
Author Affiliations
Abstract
1 Science and Technology on Plasma Physics Laboratory , Laser Fusion Research Center , China Academy of Engineering Physics , Mianyang 621900 , China
2 IFSA Collaborative Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
Muons produced by the Bethe–Heitler process from laser wakefield accelerated electrons interacting with high materials have velocities close to the laser wakefield. It is possible to accelerate those muons with laser wakefield directly. Therefore for the first time we propose an all-optical ‘Generator and Booster’ scheme to accelerate the produced muons by another laser wakefield to supply a prompt, compact, low cost and controllable muon source in laser laboratories. The trapping and acceleration of muons are analyzed by one-dimensional analytic model and verified by two-dimensional particle-in-cell (PIC) simulation. It is shown that muons can be trapped in a broad energy range and accelerated to higher energy than that of electrons for longer dephasing length. We further extrapolate the dependence of the maximum acceleration energy of muons with the laser wakefield relativistic factor and the relevant initial energy . It is shown that a maximum energy up to 15.2 GeV is promising with and on the existing short pulse laser facilities.
laser wakefield acceleration muon source 
High Power Laser Science and Engineering
2018, 6(4): 04000e63
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics , Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China
2 University of Chinese Academy of Sciences , Beijing 100049 , China
3 Collaborative Innovation Center of IFSA , Shanghai Jiao Tong University , Shanghai 200240 , China
4 School of Physical Science and Technology , ShanghaiTech University, Shanghai 200031 , China
In this study, we investigate a new simple scheme using a planar undulator (PU) together with a properly dispersed electron beam ( beam) with a large energy spread ( ) to enhance the free-electron laser (FEL) gain. For a dispersed beam in a PU, the resonant condition is satisfied for the center electrons, while the frequency detuning increases for the off-center electrons, inhibiting the growth of the radiation. The PU can act as a filter for selecting the electrons near the beam center to achieve the radiation. Although only the center electrons contribute, the radiation can be enhanced significantly owing to the high-peak current of the beam. Theoretical analysis and simulation results indicate that this method can be used for the improvement of the radiation performance, which has great significance for short-wavelength FEL applications.
free-electron lasers X-rays soft X-rays extreme ultraviolet 
High Power Laser Science and Engineering
2018, 6(4): 04000e64
Author Affiliations
Abstract
1 Central Laser Facility , STFC Rutherford Appleton Laboratory , Didcot , OX11 0QX , UK
2 Institute for Radiation Physics , Helmholtz-Zentrum Dresden-Rossendorf e.V. , D-01328 Dresden , Germany
In this paper we review the design and development of a 100 J, 10 Hz nanosecond pulsed laser, codenamed DiPOLE100X, being built at the Central Laser Facility (CLF). This 1 kW average power diode-pumped solid-state laser (DPSSL) is based on a master oscillator power amplifier (MOPA) design, which includes two cryogenic gas cooled amplifier stages based on DiPOLE multi-slab ceramic Yb:YAG amplifier technology developed at the CLF. The laser will produce pulses between 2 and 15 ns in duration with precise, arbitrarily selectable shapes, at pulse repetition rates up to 10 Hz, allowing real-time shape optimization for compression experiments. Once completed, the laser will be delivered to the European X-ray Free Electron Laser (XFEL) facility in Germany as a UK-funded contribution in kind, where it will be used to study extreme states of matter at the High Energy Density (HED) instrument.
cryogenic lasers diode-pumped solid-state laser high energy lasers laser amplifiers Yb:YAG 
High Power Laser Science and Engineering
2018, 6(4): 04000e65