High Power Laser Science and Engineering
Search

2020, 8(1) Column

MORE

High Power Laser Science and Engineering 第8卷 第1期

Author Affiliations
Abstract
Institute of Laser Engineering, Beijing University of Technology, Beijing100124, China
We report high-energy, high-efficiency second harmonic generation in a near-infrared all-solid-state burst-mode picosecond laser at a repetition rate of 1 kHz with four pulses per burst using a type-I noncritical phase-matching lithium triborate crystal. The pulses in each burst have the same time delay (${\sim}1~\text{ns}$), the same pulse duration (${\sim}100~\text{ps}$) and different relative amplitudes that can be adjusted separately. A mode-locked beam from a semiconductor saturable absorber mirror is pulse-stretched, split into seed pulses and injected into a Nd:YAG regenerative amplifier. After the beam is reshaped by aspheric lenses, a two-stage master oscillator power amplifier and 4f imaging systems are applied to obtain a high power of ${\sim}100~\text{W}$. The 532 nm green laser has a maximum conversion efficiency of 68%, an average power of up to 50 W and a beam quality factor $M^{2}$ of 3.5.
all-solid-state laser high-power laser second harmonic generation 
High Power Laser Science and Engineering
2020, 8(1): 010000e1
X. H. Yang 1,2,3,*C. Ren 2H. Xu 3,4Y. Y. Ma 1,3,5F. Q. Shao 1
Author Affiliations
Abstract
1 Department of Physics, National University of Defense Technology, Changsha410073, China
2 Department of Mechanical Engineering, University of Rochester, Rochester, New York14627, USA
3 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai200240, China
4 College of Computing Science, National University of Defense Technology, Changsha410073, China
5 State Key Laboratory of NBC Protection for Civilian, Beijing102205, China
Ultraintense laser-driven relativistic electrons provide a way of heating matter to high energy density states related to many applications. However, the transport of relativistic electrons in solid targets has not been understood well yet, especially in dielectric targets. We present the first detailed two-dimensional particle-in-cell simulations of relativistic electron transport in a silicon target by including the field ionization and collisional ionization processes. An ionization wave is found propagating in the insulator, with a velocity dependent on laser intensity and slower than the relativistic electron velocity. Widely spread electric fields in front of the sheath fields are observed due to the collective effect of free electrons and ions. The electric fields are much weaker than the threshold electric field of field ionization. Two-stream instability behind the ionization front arises for the cases with laser intensity greater than $5\times 10^{19}~\text{W}/\text{cm}^{2}$ that produce high relativistic electron current densities.
ionization wave relativistic electrons transport ultraintense laser 
High Power Laser Science and Engineering
2020, 8(1): 010000e2
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen518060, China
2 College of Electronic and Information Engineering, Shenzhen University, Shenzhen518060, China
A tunable ultrafast intensity-rotating optical field is generated by overlapping a pair of 20 Hz, 800 nm chirped pulses with a Michelson interferometer (MI). Its rotating rate can be up to 10 trillion radians per second ($\text{Trad}/\text{s}$), which can be flexibly tuned with a mirror in the MI. Besides, its fold rotational symmetry structure is also changeable by controlling the difference from the topological charges of the pulse pair. Experimentally, we have successfully developed a two-petal lattice with a tunable rotating speed from $3.9~\text{Trad}/\text{s}$ up to $11.9~\text{Trad}/\text{s}$, which is confirmed by our single-shot ultrafast frame imager based on noncollinear optical-parametric amplification with its highest frame rate of 15 trillion frames per second (Tfps). This work is carried out at a low repetition rate. Therefore, it can be applied at relativistic, even ultrarelativistic, intensities, which usually operate in low repetition rate ultrashort and ultraintense laser systems. We believe that it may have application in laser-plasma-based accelerators, strong terahertz radiations and celestial phenomena.
noncollinear optical-parametric amplification rotating rate ultrafast frame imager ultrafast intensity-rotating optical field 
High Power Laser Science and Engineering
2020, 8(1): 010000e3
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
2 University of Chinese Academy of Sciences, Beijing100049, China
3 ShanghaiTech University, Shanghai201210, China
In this paper, we report the recent progress on the $1~\text{PW}/0.1~\text{Hz}$ laser beamline of Shanghai Superintense Ultrafast Laser Facility (SULF). The SULF-1 PW laser beamline is based on the double chirped pulse amplification (CPA) scheme, which can generate laser pulses of 50.8 J at 0.1 Hz after the final amplifier; the shot-to-shot energy fluctuation of the amplified pulse is as low as 1.2% (std). After compression, the pulse duration of 29.6 fs is achieved, which can support a maximal peak power of 1 PW. The contrast ratio at $-80~\text{ps}$ before main pulse is measured to be $2.5\times 10^{-11}$. The focused peak intensity is improved by optimizing the angular dispersion in the grating compressor. The maximal focused peak intensity can reach $2.7\times 10^{19}~\text{W}/\text{cm}^{2}$ even with an $f/26.5$ off-axis parabolic mirror. The horizontal and vertical angular pointing fluctuations in 1 h are measured to be 1.89 and $2.45~\unicode[STIX]{x03BC}\text{rad}$, respectively. The moderate repetition rate and the good stability are desirable characteristics for laser–matter interactions. The SULF-1 PW laser beamline is now in the phase of commissioning, and preliminary experiments of particle acceleration and secondary radiation under 300–400 TW/0.1 Hz laser condition have been implemented. The progress on the experiments and the daily stable operation of the laser demonstrate the availability of the SULF-1 PW beamline.
laser amplifiers lasers titanium ultrafast lasers 
High Power Laser Science and Engineering
2020, 8(1): 010000e4
Author Affiliations
Abstract
1 York Plasma Institute, University of York, Heslington, YorkYO10 5DQ, UK
2 Hellenic Mediterranean University, Institute of Plasma Physics and Lasers - IPPL, 74100 Rethymnon, 73133 Chania, Crete, Greece
3 University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405Talence, France
4 Department of Physics, University of Ioannina, GR 45110Ioannina, Greece
5 LULI - CNRS, CEA, Sorbonne Universiés, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau Cedex, France
6 Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
7 Centro de Láseres Pulsados (CLPU), Edificio M5, Parque Cientfico, C/ Adaja 8, 37185Villamayor, Salamanca, Spain
8 Centro de Láseres Pulsados (CLPU), Edificio M5, Parque Cientfico, C/ Adaja 8, 37185Villamayor, Salamanca, Spain
9 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19, Prague 1, Czech Republic
10 LULI - CNRS, CEA, Sorbonne Universiés, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau Cedex, France
11 University Institute for Educational Sciences, University of Salamanca, 37008Salamanca, Spain
12 University Institute for Educational Sciences, University of Salamanca, 37008Salamanca, Spain
13 Centro de Láseres Pulsados (CLPU), Edificio M5, Parque Cientfico, C/ Adaja 8, 37185Villamayor, Salamanca, Spain
The second and final year of the Erasmus Plus programme ‘Innovative Education and Training in high power laser plasmas’, otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme, where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The ‘in-class’ time is limited to 4 weeks a year, and the programme spans 2 years. PowerLaPs aims to train students from across Europe in theoretical, applied and laboratory skills relevant to the pursuit of research in laser plasma interaction physics and inertial confinement fusion. Lectures are intermingled with laboratory sessions and continuous assessment activities. The programme, which is led by workers from the Hellenic Mediterranean University and supported by co-workers from the Queen’s University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca and the University of York, has just finished its second and final year. Six Learning Teaching Training activities have been held at the Queen’s University Belfast, the University of Bordeaux, the Czech Technical University, the University of Salamanca and the Institute of Plasma Physics and Lasers of the Hellenic Mediterranean University. The last of these institutes hosted two 2-week-long Intensive Programmes, while the activities at the other four universities were each 5 days in length. In addition, a ‘Multiplier Event’ was held at the University of Ioannina, which will be briefly described. In this second year, the work has concentrated on training in both experimental diagnostics and simulation techniques appropriate to the study of plasma physics, high power laser matter interactions and high energy density physics. The nature of the programme will be described in detail, and some metrics relating to the activities carried out will be presented. In particular, this paper will focus on the overall assessment of the programme.
laser plasma interactions postgraduate education 
High Power Laser Science and Engineering
2020, 8(1): 010000e5
Author Affiliations
Abstract
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
3 School of Aerospace Engineering, Tsinghua University, Beijing100084, China
4 Department of Engineering Physics, Tsinghua University, Beijing100084, China
To reduce the seed length while maintaining the advantages of the cuboid KDP-type crystal, a long-seed KDP crystal with size $471~\text{mm}\times 480~\text{mm}\times 400~\text{mm}$ is rapidly grown. With almost the same high cutting efficiency to obtain third harmonic generation oriented samples, this long-seed KDP-type crystal can be grown with a shorter seed than that of the cuboid KDP-type crystal. The full width at half maximum of the high-resolution X-ray diffraction of the (200) crystalline face is 28.8 arc seconds, indicating that the long-seed KDP crystal has good crystalline quality. In the wavelength range of 377–1022 nm, the transmittance of the long-seed KDP crystal is higher than 90%. The fluence for the 50% probability of laser-induced damage (LID) is $18.5~\text{J}/\text{cm}^{2}$ (3 ns, 355 nm). Several test points survive when the laser fluence exceeds $30~\text{J}/\text{cm}^{2}$ (3 ns, 355 nm), indicating the good LID performance of the long-seed KDP crystal. At present, the growth of a long-seed DKDP crystal is under way.
KDP crystal long-seed rapid growth 
High Power Laser Science and Engineering
2020, 8(1): 010000e6
Author Affiliations
Abstract
1 Institute of Plasma Physics & Lasers, Hellenic Mediterranean University, Chania 73133, Rethymno 74100, Greece
2 The John Adams Institute, The Blackett Laboratory, Imperial College, London SW7 2AZ, UK
3 The John Adams Institute, The Blackett Laboratory, Imperial College, London SW7 2AZ, UK
4 Department of Physics, University of Ioannina, GR Ioannina 45110, Greece
5 Institute of Plasma Physics & Lasers, Hellenic Mediterranean University, Chania 73133, Rethymno 74100, Greece
6 Institute of Plasma Physics & Lasers, Hellenic Mediterranean University, Chania 73133, Rethymno 74100, Greece
We study the optimization of collisionless shock acceleration of ions based on hydrodynamic modelling and simulations of collisional shock waves in gaseous targets. The models correspond to the specifications required for experiments with the $\text{CO}_{2}$ laser at the Accelerator Test Facility at Brookhaven National Laboratory and the Vulcan Petawatt system at Rutherford Appleton Laboratory. In both cases, a laser prepulse is simulated to interact with hydrogen gas jet targets. It is demonstrated that by controlling the pulse energy, the deposition position and the backing pressure, a blast wave suitable for generating nearly monoenergetic ion beams can be formed. Depending on the energy absorbed and the deposition position, an optimal temporal window can be determined for the acceleration considering both the necessary overdense state of plasma and the required short scale lengths for monoenergetic ion beam production.
hydrodynamic simulations ion acceleration laser–plasma interaction 
High Power Laser Science and Engineering
2020, 8(1): 010000e7
Author Affiliations
Abstract
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623-1299, USA
The development of laser performance models having real-time prediction capability for the OMEGA EP laser system has been essential in meeting requests from its user community for increasingly complex pulse shapes that span a wide range of energies. The laser operations model PSOPS provides rapid and accurate predictions of OMEGA EP laser-system performance in both forward and backward directions, a user-friendly interface and rapid optimization capability between shots. We describe the model’s features and show how PSOPS has allowed real-time optimization of the laser-system configuration in order to satisfy the demands of rapidly evolving experimental campaign needs. We also discuss several enhancements to laser-system performance accuracy and flexibility enabled by PSOPS.
laser operations high-energy laser systems pulse shaping high-energy-density physics laser-system modeling 
High Power Laser Science and Engineering
2020, 8(1): 010000e8
Author Affiliations
Abstract
1 York Plasma Institute, University of York, Heslington, YorkYO10 5DQ, UK
2 Hellenic Mediterranean University, Institute of Plasma Physics and Lasers - IPPL, 74100 Rethymnon, 73133 Chania, Crete, Greece
3 Centro de Láseres Pulsados (CLPU), Edificio M5, Parque Cientfico, C/ Adaja 8, 37185Villamayor, Salamanca, Spain
4 University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405Talence, France
5 Department of Physics, University of Ioannina, GR 45110Ioannina, Greece
6 LULI - CNRS, CEA, Sorbonne Universiés, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau Cedex, France
7 Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
8 Centro de Láseres Pulsados (CLPU), Edificio M5, Parque Cientfico, C/ Adaja 8, 37185Villamayor, Salamanca, Spain
9 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19, Prague 1, Czech Republic
10 LULI - CNRS, CEA, Sorbonne Universiés, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau Cedex, France
11 University Institute for Educational Sciences, University of Salamanca, 37008Salamanca, Spain
12 University Institute for Educational Sciences, University of Salamanca, 37008Salamanca, Spain
13 Centro de Láseres Pulsados (CLPU), Edificio M5, Parque Cientfico, C/ Adaja 8, 37185Villamayor, Salamanca, Spain
The original publication omitted the following authors from the list of authors on the title page:
High Power Laser Science and Engineering
2020, 8(1): 010000e9
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
2 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
3 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
A simple, compact, double-pass pumped Nd:YVO4 thin disk laser is demonstrated. Its continuous-wave performance with different Nd doping concentrations and thicknesses is investigated experimentally. The maximum output power of 17.7 W is achieved by employing a 0.5 at.% doped sample, corresponding to an optical-to-optical efficiency of 46% with respect to the absorbed pump power. In addition, a numerical analysis and an experimental study of the temperature distribution, and thermal lens effect of the Nd:YVO4 thin disk, are presented considering the influence of the energy transfer upconversion effect and the temperature dependence of the thermal conductivity tensor. The simulated results are in good agreement with the experimental results.
energy transfer upconversion effect Nd:YVO4 thermal lens effect thin disk laser 
High Power Laser Science and Engineering
2020, 8(1): 01000e10