光电子快报(英文版), 2024, 20 (5): 272, Published Online: Aug. 23, 2024  

Recent advances in MXene for terahertz applications*

Author Affiliations
1 Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Elec-tronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
2 College of Science, Harbin University of Science and Technology, Harbin 150080, China
3 National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin University of Science and Technology, Harbin 150080, China1
Abstract
Since first synthesized in 2011, MXenes have attracted extensive attention in many scientific fields as a new two-dimensional (2D) material because of the unique physical and chemical properties. Over the past decade, in particular, MXenes have obtained numerous exciting achievements in the field of terahertz applications. In this review, we first briefly introduce the MXene materials, such as the basic structure and main fabrication processes of MXenes. Then, we summarize the recent applications of MXene materials in various terahertz research areas, including terahertz modulation, terahertz absorption, terahertz shielding, terahertz communication, terahertz detection and terahertz generation, in which the representative results are presented. Finally, we give an outlook on the future research directions of MXene materials and their potential applications.
References

[1] XIE Q, GUO L H, ZHANG Z X, et al. Versatile tera- hertz graphene metasurface based on plasmon-induced transparency[J]. Applied surface science, 2022, 604: 154575.

[2] KUMAR P, YU S, SHAHZAD F, et al. Ultrahigh elec- trically and thermally conductive self-aligned gra- phene/polymer composites using large-area reduced graphene oxides[J]. Carbon, 2016, 101: 120-128.

[3] BATI A S R, HAO M, MACDONALD T J, et al. 1D-2Dsynergistic MXene-nanotubes hybrids for efficient perovskite solar cells[J]. Small, 2021, 17(32): 2101925.

[4] GUO Z, GAO L, XU Z, et al. High electrical conductiv- ity 2D MXene serves as additive of perovskite for effi- cient solar cells[J]. Small, 2018, 14(47): 1802738.

[5] WANG J, CAI Z, LIN D, et al. Plasma oxidized Ti3C2Tx MXene as electron transport layer for efficient perovskite solar cells[J]. ACS applied materials & in- terfaces, 2021, 13(27): 32495-32502.

[6] HANGYO M. Development and future prospects of terahertz technology[J]. Japanese journal of applied physics, 2015, 54(12): 120101.

[7] PAWAR A Y, SONAWANE D D, ERANDE K B, et al. Terahertz technology and its applications[J]. Drug in- vention today, 2013, 5(2): 157-163.

[8] GOOSSENS S, NAVICKAITE G, MONASTERIO C, et al. Broadband image sensor array based on gra- phene-CMOS integration[J]. Nature photonics, 2017, 11(6): 366-371.

[9] SUN L, ZHAO L, PENG R Y. Research progress in the effects of terahertz waves on biomacromolecules[J]. Military medical research, 2021, 8(1): 1-8.

[10] KOENIG S, LOPEZ-DIAZ D, ANTES J, et al. Wireless sub-THz communication system with high data rate[J]. Nature photonics, 2013, 7(12): 977-981.

[11] GONG A, QIU Y, CHEN X, et al. Biomedical applica- tions of terahertz technology[J]. Applied spectroscopy reviews, 2020, 55(5): 418-438.

[12] TANG X, GUO X, WU W, et al. 2D metal carbides and nitrides (MXenes) as high-performance electrode mate- rials for lithium-based batteries[J]. Advanced energy materials, 2018, 8(33): 1801897.

[13] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced materials, 2018, 30(52): 1804779.

[14] BARSOUM M W, RL-RAGHY T. The MAX phases: unique new carbide and nitride materials: ternary ce- ramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and light weight[J]. American scientist, 2001, 89(4): 334-343.

[15] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary com- pounds[J]. International materials reviews, 2011, 56(3): 143-166.

[16] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS nano, 2012, 6(2): 1322-1331.

[17] ZHAN X, SI C, ZHOU J, et al. MXene and MXene-based composites: synthesis, properties and environment-related applications[J]. Nanoscale hori- zons, 2020, 5(2): 235-258.

[18] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced materials, 2011, 23(37): 4248-4253.

[19] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced materials, 2014, 26(7): 992-1005.

[20] LU J, PERSSON I, LIND H, et al. Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations[J]. Nanoscale advances, 2019, 1(9): 3680-3685.

[21] KAMYSBAYEV V, FILATOV A S, HU H, et al. Cova- lent surface modifications and superconductivity of two dimensional metal carbide MXenes[J]. Science (New York, N.Y.), 2020, 369(6506): 979-983.

[22] JHON T I, LEE J H, JHON Y M. Surface termination effects on the terahertz-range optical responses of two-dimensional MXenes: density functional theory study[J]. Materials today communications, 2022, 32: 103917.

[23] KHAZAEI K, ARAI M, SASAKI T, et al. OH-terminated two-dimensional transition metal car- bides and nitrides as ultralow work function materi- als[J]. Physical review B, 2015, 92(7): 075411.

[24] LIU Y, XIAO H, WILLIAM A G. Schottky-barrier-free contacts with two-dimensional semiconductors by sur- face-engineered MXenes[J]. Journal of the American chemical society, 2016, 138(49): 15853-15856.

[25] KUANG PY, LOW J X, CHENG B, et al. MXene-based photocatalysts[J]. Journal of materials science & tech- nology, 2020, 56: 18-44.

[26] JIANG X, LIU S, LIANG W, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T=F, O, or OH)[J]. Laser & photonics reviews, 2018, 12(2): 1700229.

[27] ZHANG T, CHU H, LI Y, et al. Third-order optical nonlinearity in Ti2C MXene for Q-switching operation at 1-2 μm[J]. Optical materials, 2022, 124: 112054.

[28] HU T, ZHANG H, WANG J, et al. Anisotropic elec- tronic conduction in stacked two-dimensional titanium carbide[J]. Scientific reports, 2015, 5(1): 16329.

[29] REN C E, ZHAO M Q, MAKARYAN T, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage[J]. ChemE- lectroChem, 2016, 3(5): 689-693.

[30] ZHANG T, PAN L, TANG H, et al. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination[J]. Journal of alloys and compounds, 2017, 695: 818-826.

[31] FENG T, HUANG W, ZHU H, et al. Optical-transparent self-assembled MXene film with high-efficiency tera- hertz reflection modulation[J]. ACS applied materials & interfaces, 2021, 13(8): 10574-10582.

[32] SHUI W, LI J, WANG H, et al. Ti3C2Tx MXene sponge composite as broadband terahertz absorber[J]. Ad- vanced optical materials, 2020, 8(21): 2001120.

[33] LIN Z, LIU J, PENG W, et al. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding[J]. ACS nano, 2020, 14(2): 2109-2117.

[34] LIU F, ZHOU A, CHEN J, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties[J]. Applied surface science, 2017, 416: 781-789.

[35] SHAHZAD F, ALHABEB M, HATTER M, et al. Elec- tromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353: 1137-1140.

[36] TITOVA L V, LI G, NATU V, et al. 2D MXenes: Tera- hertz properties and applications[C]//2020 45th In- ternational Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), November 8-13, 2020, Online. New York: IEEE, 2020: 1-2.

[37] CHOI G, SHAHAZAD F, BAHK Y M, et al. Enhanced terahertz shielding of MXenes with nano-metamaterials[J]. Advanced optical materials, 2018, 6(5): 1701076.

[38] ANISHA A, KUMAR D S. Performance analysis of Ta4C3 MXene based optically transparent patch an- tenna for terahertz communications[J]. Optik, 2022, 260: 168959.

[39] JHON Y I, SEO M, JHON Y M. First-principles study of a MXene terahertz detector[J]. Nanoscale, 2018, 10(1): 69-75.

[40] LI G, MONTAZERI K, ISMAIL M K, et al. Terahertz polarizers based on 2D Ti3C2Tz MXene: spin cast from aqueous suspensions[J]. Advanced photonics research, 2020, 1(2): 2000084.

[41] ZHANG M, WANG X X, CAO W Q, et al. Electro- magnetic functions of patterned 2D materials for mi- cro-nano devices covering GHz, THz, and optical fre- quency[J]. Advanced optical materials, 2019, 7(19): 1900689.

[42] CHEN Z, CHEN X, TAO L, et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation[J]. Nature communications, 2018, 9(1): 4909.

[43] WEN Q Y, TIAN W, MAO Q, et al. Graphene based all-optical spatial terahertz modulator[J]. Scientific re- ports, 2014, 4(1): 7409.

[44] DING Y, ZHU X, XIAO S, et al. Effective elec- tro-optical modulation with high extinction ratio by a graphene-silicon microring resonator[J]. Nano letters, 2015, 15(7): 4393-4400.

[45] TANG T, LI J, LUO L, et al. Magneto-optical modula- tion of photonic spin Hall effect of graphene in terahertz region[J]. Advanced optical materials, 2018, 6(7): 1701212.

[46] TASOLAMPROU A C, KOULOUKLIDIS A D, DASKALAKI C, et al. Experimental demonstration of ultrafast THz modulation in a graphene-based thin film absorber through negative photoinduced conductiv- ity[J]. ACS photonics, 2019, 6(3): 720-727.

[47] LI J, LI J, ZHENG C. Dynamic control of reflective chiral terahertz metasurface with a new application de- veloping in full grayscale near field imaging[J]. Carbon, 2021, 172: 189-199.

[48] LIU Y, LI X, YANG T, et al. Flexible broadband tera- hertz modulation based on strain-sensitive MXene ma- terial[J]. Frontiers in physics, 2021, 9: 670972.

[49] FENG T, HU Y, CHANG X, et al. Highly flexible Ti3C2Tx MXene/waterborne polyurethane membranes for high-efficiency terahertz modulation with low inser- tion loss[J]. ACS applied materials & interfaces, 2023, 15(5): 7592-7601.

[50] THOMASSIN J, LOU X, PAGNOULLE C, et al. Mul- tiwalled carbon nanotube/poly (ε-caprolactone) nano- composites with exceptional electromagnetic interfer- ence shielding properties[J]. The journal of physical chemistry C, 2007, 111(30): 11186-11192.

[51] MA W, CHEN H, HOU S, et al. Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band[J]. ACS applied materials & interfaces, 2019, 11(28): 25369-25377.

[52] CHEN M, LIU J, CHAO D, et al. Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries[J]. Nano energy, 2014, 9: 364-372.

[53] XIAO X, WANG H, URBANKOWSKI P, et al. Topochemical synthesis of 2D materials[J]. Chemical society reviews, 2018, 47(23): 8744-8765.

[54] ZHANG X T, LIU D Y, MA Y L, et al. Su- per-hydrophobic graphene coated polyurethane (GN@PU) sponge with great oil-water separation per- formance[J]. Applied surface science, 2017, 422: 116-124.

[55] SMITH R M, ARNOLD M A. Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges[J]. Applied spectroscopy reviews, 2011, 46(8): 636-679.

[56] LUO M, GUO J, SHUI W, et al. Ti3C2Tx MXene-based superhydrophobic broadband terahertz absorber with large pore-size foam architecture[J]. Advanced materi- als interfaces, 2023, 10(2): 2201767.

[57] BAI Y, QIN F, LU Y. Flexible and lightweight Ni/MXene decorated polyurethane sponge composite with sensitive strain sensing performance for ultrahigh terahertz absorption[J]. Advanced optical materials, 2022, 10(4): 2101868.

[58] FEI Y, WANG X, WANG F, et al. Covalent coupling induced-polarization relaxation in MXene-based tera- hertz absorber for realizing dual band absorption[J]. Chemical engineering journal, 2023, 461: 142049.

[59] LI S, XU S, PAN K, et al. Ultra-thin broadband tera- hertz absorption and electromagnetic shielding proper- ties of MXene/rGO composite film[J]. Carbon, 2022, 194: 127-139.

[60] BAAH M, PADDUBSKAYA A, NOVITSKY A, et al. All-graphene perfect broadband THz absorber[J]. Car- bon, 2021, 185: 709-716.

[61] WAN H, LIU N, TANG J, et al. Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorp-tion and shielding[J]. ACS nano, 2021, 15(8):13646-13652.

[62] NASEER A, MUMTAZ M, RAFFI M, et al. Rein- forcement of electromagnetic wave absorption charac- teristics in PVDF-PMMA nanocomposite by intercala- tion of carbon nanofibers[J]. Electronic materials let- ters, 2019, 15: 201-207.

[63] LIU L, DAS A, MEGARIDIS C M. Terahertz shielding of carbon nanomaterials and their composites-a review and applications[J]. Carbon, 2014, 69: 1-16.

[64] MAY, CHEN Y. Three-dimensional graphene networks: synthesis, properties and applications[J]. National sci- ence review, 2015, 2: 40-53.

[65] CONG H P, CHEN J F, YU S H, et al. Graphene-based macroscopic assemblies and architectures: an emerging material system[J]. Chemical society reviews, 2014, 43(21): 7295-7325.

[66] SHI S, QIAN B, WU X, et al. Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels[J]. Angewandte che- mie international edition, 2019, 58(50): 18171-18176.

[67] ZHU Y, LIU J, GUO T, et al. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity to- ward absorption-dominated electromagnetic-interference shielding[J]. ACS nano, 2021, 15(1): 1465-1474.

[68] WU Z, SHANG T, DENG Y, et al. The assembly of MXenes from 2D to 3D[J]. Advanced science, 2020, 7: 1903077.

[69] LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels[J]. Small, 2018, 14: 1802479.

[70] SUN J Y, ZHAO X, ILLEPERUMA W R K, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489: 133-136.

[71] FEIG V R, TRAN H, LEE M, et al. Mechanically tun- able conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue[J]. Nature communication, 2018, 9: 2740.

[72] ZOU H, YI P, XU W, et al. Rapid room-temperature polymerization strategy to prepare organic/inorganic hybrid conductive organohydrogel for terahertz wave responsiveness[J]. Chemical engineering journal, 2023, 461: 141856.

[73] ZOU Q, SHI C, LIU B, et al. Enhanced terahertz shielding by adding rare Ag nanoparticles to Ti3C2Tx MXene fiber membranes[J]. Nanotechnology, 2021, 32(41): 415204.

[74] ZOU Q, GUO W, ZHANG L, et al. MXene-based ul- tra-thin film for terahertz radiation shielding[J]. Nanotechnology, 2020, 31(50): 505710.

[75] HUSSAIN K, MEHBOOB S, AHMAD I, et al. Tera- hertz time-domain spectroscopy of thin and flexible CNT-modified MXene/polymer composites[J]. Applied physics A, 2021, 127(5): 1-8.

[76] LI G, AMER N, HAFEZ H A, et al. Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses[J]. Nano letters, 2019, 20(1): 636-643.

[77] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature photonics, 2007, 1(2): 97-105.

[78] ANAND S, DARAK M S, KUMAR D S. Investigations on indium tin oxide based optically transparent terahertz E-shaped patch antenna[J]. Advances in signal process- ing and intelligent, 2014, 264: 195-202.

[79] DONG L, CHU H, LI Y, et al. Surface functionalization of Ta4C3 MXene for broadband ultrafast photonics in the near-infrared region[J]. Applied materials today, 2022, 26: 101341.

[80] RAFIEERAD A, AMIRI A, SEQUIERA G L, et al. Development of fluorine-free tantalum carbide MXene hybrid structure as a biocompatible material for super- capacitor electrodes[J]. Advanced functional materials, 2021: 2100015.

[81] LIN H, WANG Y, GAO S, et al. Theranostic 2D tanta- lum carbide (MXene)[J]. Advanced materials, 2018, 30(4): 1703284.

[82] FENG W, LUO H, YU W, et al. Ti3C2 MXene: a prom- ising microwave absorbing material[J]. RSC advances, 2018, 8(5): 2398-2403.

[83] BAIG S E, BOLAND J L, DAMRY D A, et al. An ul- trafast switchable terahertz polarization modulator based on III-V semiconductor nanowires[J]. Nano let- ters, 2017, 17(4): 2603-2610.

ZHANG Yongzhi1, JIANG Jiuxing2, YAO Yongtao3, and HE Xunjun1. Recent advances in MXene for terahertz applications*[J]. 光电子快报(英文版), 2024, 20(5): 272.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!